生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 176-185.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0699
夏光丽1,2(), 曹娜1,2, 孙慧慧2(), 赵玲2, 曹荣2,3
收稿日期:
2023-07-19
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
孙慧慧,女,博士,副研究员,研究方向:微生物酶与生物催化转化在海洋食品中的应用;E-mail: sunhh@ysfri.ac.cn作者简介:
夏光丽,女,硕士研究生,研究方向:半乳糖氧化酶的挖掘及定向改造;E-mail: 18765600710@139.com
XIA Guang-li1,2(), CAO Na1,2, SUN Hui-hui2(), ZHAO Ling2, CAO Rong2,3
Received:
2023-07-19
Published:
2024-01-26
Online:
2024-02-06
摘要:
半乳糖氧化酶是一种重要的生物催化剂,具有催化效率高和绿色环保的特点,在生物传感器、食品、医疗和化工等领域得到广泛应用。然而,天然的半乳糖氧化酶存在稳定性差、催化效率低、回收成本高等缺陷,限制了其在食品安全和生物医学等领域的应用。随着基因工程和蛋白质工程的发展,人们可以对半乳糖氧化酶进行有目的的改造,以提高酶的性能或者获得新功能的重组酶。因此,追求具有重要催化能力和强大功能的半乳糖氧化酶成为该领域的研究热点。本文综述了半乳糖氧化酶的分子结构、催化机理等基本信息,并分析总结了半乳糖氧化酶进行生物学改造的相关案例,旨在为半乳糖氧化酶相关研究者提供新的思路和方法。
夏光丽, 曹娜, 孙慧慧, 赵玲, 曹荣. 半乳糖氧化酶的生物学改造研究进展[J]. 生物技术通报, 2024, 40(1): 176-185.
XIA Guang-li, CAO Na, SUN Hui-hui, ZHAO Ling, CAO Rong. Advances in the Biological Modification of Galactose Oxidase[J]. Biotechnology Bulletin, 2024, 40(1): 176-185.
图3 半乳糖氧化酶的晶体结构(以来源于F. graminearum的半乳糖氧化酶为例,PDB ID:1GOG) a:1 GOG的正面视图; b:1GOG的催化活性位点
Fig. 3 Crystal structure of galactose oxidase(Taken the galactose oxidase from F. graminearum as the template, PDB ID:1GOG) a: Front-view of 1GOG; b: Catalytic active sites of 1GOG
[1] |
Johnson HC, Zhang SG, Fryszkowska A, et al. Biocatalytic oxidation of alcohols using galactose oxidase and a manganese(III)activator for the synthesis of islatravir[J]. Org Biomol Chem, 2021, 19(7): 1620-1625.
doi: 10.1039/D0OB02395G URL |
[2] |
Parodi A, Asteasuain M, Magario I. Kinetic analysis and evaluation of galactose oxidase activation by hematin in the green oxidation of glycerol[J]. Biochem Eng J, 2021, 176: 108203.
doi: 10.1016/j.bej.2021.108203 URL |
[3] |
Yin Z, Zhi JF. A photoelectrochemical biosensor based on the direct electron transfer to galactose oxidase[J]. J Photochem Photobiol A Chem, 2020, 397: 112560.
doi: 10.1016/j.jphotochem.2020.112560 URL |
[4] | 秦琼. 固定半乳糖氧化酶催化氧化HMF的研究[D]. 北京: 北京化工大学, 2019. |
Qin Q. Study on catalytic oxidation of HMF by fixed galactose oxidase[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
[5] | 楚浩. 半乳糖氧化酶/超氧化物歧化酶双酶催化5-羟甲基糠醛的氧化的研究[D]. 北京: 北京化工大学, 2020. |
Chu H. Study on oxidation of 5-hydroxymethylfurfural by galactose oxidase/superoxide dismutase[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
[6] |
Ribeaucourt D, Bissaro B, Guallar V, et al. Comprehensive insights into the production of long chain aliphatic aldehydes using a copper-radical alcohol oxidase as biocatalyst[J]. ACS Sustainable Chem Eng, 2021, 9(12): 4411-4421.
doi: 10.1021/acssuschemeng.0c07406 URL |
[7] |
Huffman MA, Fryszkowska A, Alvizo O, et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir[J]. Science, 2019, 366(6470): 1255-1259.
doi: 10.1126/science.aay8484 pmid: 31806816 |
[8] |
Cleveland M, Lafond M, Xia FR, et al. Two Fusarium copper radical oxidases with high activity on aryl alcohols[J]. Biotechnol Biofuels, 2021, 14(1): 138.
doi: 10.1186/s13068-021-01984-0 pmid: 34134727 |
[9] |
Birmingham WR, Toftgaard Pedersen A, Dias Gomes M, et al. Toward scalable biocatalytic conversion of 5-hydroxymethylfurfural by galactose oxidase using coordinated reaction and enzyme engineering[J]. Nat Commun, 2021, 12(1): 4946.
doi: 10.1038/s41467-021-25034-3 pmid: 34400632 |
[10] |
Xu SH, Zheng JN, Xiao HP, et al. Simultaneously identifying and distinguishing glycoproteins with O-GlcNAc and O-GalNAc(the tn antigen)in human cancer cells[J]. Anal Chem, 2022, 94(7): 3343-3351.
doi: 10.1021/acs.analchem.1c05438 URL |
[11] |
Fong JK, Brumer H. Copper radical oxidases: galactose oxidase, glyoxal oxidase, and beyond![J]. Essays Biochem, 2023, 67(3): 597-613.
doi: 10.1042/EBC20220124 URL |
[12] |
Cooper JAD, Smith W, Bacila M, et al. Galactose oxidase from Polyporus circinatus, Fr[J]. J Biol Chem, 1959, 234(3): 445-448.
doi: 10.1016/S0021-9258(18)70223-8 URL |
[13] |
McPherson MJ, Ogel ZB, Stevens C, et al. Galactose oxidase of Dactylium dendroides gene cloning and sequence analysis[J]. J Biol Chem, 1992, 267(12): 8146-8152.
pmid: 1569070 |
[14] |
Faria CB, de Castro FF, Martim DB, et al. Production of galactose oxidase inside the Fusarium fujikuroi species complex and recombinant expression and characterization of the galactose oxidase GaoA protein from Fusarium subglutinans[J]. Mol Biotechnol, 2019, 61(9): 633-649.
doi: 10.1007/s12033-019-00190-6 |
[15] |
Mathieu Y, Cleveland ME, Brumer H. Active-site engineering switches carbohydrate regiospecificity in a fungal copper radical oxidase[J]. ACS Catal, 2022, 12(16): 10264-10275.
doi: 10.1021/acscatal.2c01956 pmid: 36033369 |
[16] |
Cao N, Xia GL, Sun HH, et al. Characterization of a galactose oxidase from Fusarium odoratissimum and its application in the modification of agarose[J]. Foods, 2023, 12(3): 603.
doi: 10.3390/foods12030603 URL |
[17] |
Dean RA, Talbot NJ, Ebbole DJ, et al. The genome sequence of the rice blast fungus Magnaporthe grisea[J]. Nature, 2005, 434(7036): 980-986.
doi: 10.1038/nature03449 |
[18] |
Ellison CE, Stajich JE, Jacobson DJ, et al. Massive changes in genome architecture accompany the transition to self-fertility in the filamentous fungus Neurospora tetrasperma[J]. Genetics, 2011, 189(1): 55-69.
doi: 10.1534/genetics.111.130690 URL |
[19] |
Mathieu Y, Offen WA, Forget SM, et al. Discovery of a fungal copper radical oxidase with high catalytic efficiency toward 5-hydroxymethylfurfural and benzyl alcohols for bioprocessing[J]. ACS Catal, 2020, 10(5): 3042-3058.
doi: 10.1021/acscatal.9b04727 URL |
[20] |
Whittaker JW. Free radical catalysis by galactose oxidase[J]. Chem Rev, 2003, 103(6): 2347-2363.
doi: 10.1021/cr020425z pmid: 12797833 |
[21] |
Whittaker MM, Whittaker JW. Streptomyces coelicolor oxidase(SCO2837p): a new free radical metalloenzyme secreted by Streptomyces coelicolor A3(2)[J]. Arch Biochem Biophys, 2006, 452(2): 108-118.
pmid: 16884677 |
[22] |
Ito N, Knowles PF, Phillips SE. X-ray crystallographic studies of cofactors in galactose oxidase[J]. Methods Enzymol, 1995, 258: 235-262.
pmid: 8524154 |
[23] |
Ito N, Phillips SE, Yadav KD, et al. Crystal structure of a free radical enzyme, galactose oxidase[J]. J Mol Biol, 1994, 238(5): 794-814.
pmid: 8182749 |
[24] |
Ito N, Phillips SEV, Stevens C, et al. Novel thioether bond revealed by a 1.7 Å crystal structure of galactose oxidase[J]. Nature, 1991, 350(6313): 87-90.
doi: 10.1038/350087a0 |
[25] |
Rogers MS, Dooley DM. Posttranslationally modified tyrosines from galactose oxidase and cytochrome C oxidase[J]. Adv Protein Chem, 2001, 58: 387-436.
pmid: 11665492 |
[26] |
Yin DT, Urresti S, Lafond M, et al. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family[J]. Nat Commun, 2015, 6: 10197.
doi: 10.1038/ncomms10197 pmid: 26680532 |
[27] | Zhao FY, Brix AC, Lielpetere A, et al. On the mediated electron transfer of immobilized galactose oxidase for biotechnological applications[J]. Chemistry, 2022, 28(30): e202200868. |
[28] | 曲戈, 朱彤, 蒋迎迎, 等. 蛋白质工程:从定向进化到计算设计[J]. 生物工程学报, 2019, 35(10): 1843-1856. |
Qu G, Zhu T, Jiang YY, et al. Protein engineering: from directed evolution to computational design[J]. Chin J Biotechnol, 2019, 35(10): 1843-1856. | |
[29] | 徐鉴. 定向进化调控酶的选择性及催化多功能性[D]. 杭州: 浙江大学, 2019. |
Xu J. Directed evolution of enzymes for the regulation of selectivity and catalytic promiscuity[D]. Hangzhou: Zhejiang University, 2019. | |
[30] |
Song ZD, Zhang QF, Wu WH, et al. Rational design of enzyme activity and enantioselectivity[J]. Front Bioeng Biotechnol, 2023, 11: 1129149.
doi: 10.3389/fbioe.2023.1129149 URL |
[31] |
Escalettes F, Turner NJ. Directed evolution of galactose oxidase: generation of enantioselective secondary alcohol oxidases[J]. Chembiochem, 2008, 9(6): 857-860.
doi: 10.1002/cbic.200700689 pmid: 18330849 |
[32] |
Wilkinson D, Akumanyi N, Hurtado-Guerrero R, et al. Structural and kinetic studies of a series of mutants of galactose oxidase identified by directed evolution[J]. Protein Eng Des Sel, 2004, 17(2): 141-148.
pmid: 15047910 |
[33] |
Delagrave S, Murphy DJ, Pruss JL, et al. Application of a very high-throughput digital imaging screen to evolve the enzyme galactose oxidase[J]. Protein Eng, 2001, 14(4): 261-267.
pmid: 11391018 |
[34] |
Sun L, Petrounia IP, Yagasaki M, et al. Expression and stabilization of galactose oxidase in Escherichia coli by directed evolution[J]. Protein Eng, 2001, 14(9): 699-704.
pmid: 11707617 |
[35] |
Bornscheuer UT, Huisman GW, Kazlauskas RJ, et al. Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397): 185-194.
doi: 10.1038/nature11117 |
[36] |
Privett HK, Kiss G, Lee TM, et al. Iterative approach to computational enzyme design[J]. Proc Natl Acad Sci USA, 2012, 109(10): 3790-3795.
doi: 10.1073/pnas.1118082108 pmid: 22357762 |
[37] |
Ovchinnikov S, Park H, Varghese N, et al. Protein structure determination using metagenome sequence data[J]. Science, 2017, 355(6322): 294-298.
doi: 10.1126/science.aah4043 pmid: 28104891 |
[38] |
Baron AJ, Stevens C, Wilmot C, et al. Structure and mechanism of galactose oxidase. The free radical site[J]. J Biol Chem, 1994, 269(40): 25095-25105.
pmid: 7929198 |
[39] | Reynolds MP, Baron AJ, Wilmot CM, et al. Tyrosine 495 is a key residue in the active site of galactose oxidase[J]. Biochem Soc Trans, 1995, 23(4): 510S. |
[40] | Baron AJ, Stevens C, Wilmot CM, et al. Preliminary studies of two active site mutants of galactose oxidase[J]. Biochem Soc Trans, 1993, 21(Pt 3)(3): 319S. |
[41] |
Koncitikova R, Zuily L, Lemarié E, et al. Rational engineering of AA5_2 copper radical oxidases to probe the molecular determinants governing their substrate selectivity[J]. FEBS J, 2023, 290(10): 2658-2672.
doi: 10.1111/febs.v290.10 URL |
[42] | 刘德华. 随机突变结合半理性设计改造脯氨酸氨肽酶及蛋白结晶初探[D]. 无锡: 江南大学, 2020. |
Liu DH. Protein engineering of prolyl aminopeptidase using random mutagenesis combined with semi-rational design and preliminary study of protein crystallization[D]. Wuxi: Jiangnan University, 2020. | |
[43] | 曲戈, 袁波, 孙周通. 工业蛋白质理性设计与应用[J]. 生物工程学报, 2022, 38(11): 4068-4080. |
Qu G, Yuan B, Sun ZT. Rational design and applications of industrial proteins[J]. Chin J Biotechnol, 2022, 38(11): 4068-4080. | |
[44] |
Sun LH, Bulter T, Alcalde M, et al. Modification of galactose oxidase to introduce glucose 6-oxidase activity[J]. Chembiochem, 2002, 3(8): 781-783.
pmid: 12203977 |
[45] |
Deacon SE, McPherson MJ. Enhanced expression and purification of fungal galactose oxidase in Escherichia coli and use for analysis of a saturation mutagenesis library[J]. Chembiochem, 2011, 12(4): 593-601.
doi: 10.1002/cbic.201000634 pmid: 21264996 |
[46] | 贾峰, 郑连炳, 王志强. 生物酶固定化技术研究现状[J]. 资源节约与环保, 2020(4): 116. |
Jia F, Zheng LB, Wang ZQ. Research status of biological enzyme immobilization technology[J]. Resour Econ Environ Prot, 2020(4): 116. | |
[47] | 余冲, 孙秀丽, 王东旭, 等. 酶固定化载体及固定化方法最新研究进展[J]. 广东化工, 2021, 48(2): 60-62, 78. |
Yu C, Sun XL, Wang DX, et al. The latest research progress of enzyme immobilization carrier and immobilization method[J]. Guangdong Chem Ind, 2021, 48(2): 60-62, 78. | |
[48] |
Caseli L. Enzymes immobilized in Langmuir-Blodgett films: why determining the surface properties in Langmuir monolayer is important?[J]. An Acad Bras Cienc, 2018, 90(1 Suppl 1): 631-644.
doi: S0001-37652018005028103 pmid: 29340479 |
[49] |
de Souza Furtado FA, Caseli L. Enzyme activity preservation for galactose oxidase immobilized in stearic acid Langmuir-Blodgett films[J]. Thin Solid Films, 2020, 709: 138253.
doi: 10.1016/j.tsf.2020.138253 URL |
[50] | 罗艺献, 苏愉, 杨金花, 等. 纳米二氧化硅固定化酶的研究进展[J]. 药物生物技术, 2022, 29(3): 315-319. |
Luo YX, Su Y, Yang JH, et al. Research progress of immobilized enzyme on nano-silica[J]. Pharm Biotechnol, 2022, 29(3): 315-319. | |
[51] | 刘茹, 焦成瑾, 杨玲娟, 等. 酶固定化研究进展[J]. 食品安全质量检测学报, 2021, 12(5): 1861-1869. |
Liu R, Jiao CJ, Yang LJ, et al. Advances of enzyme immobilization[J]. J Food Saf Qual, 2021, 12(5): 1861-1869. | |
[52] |
Akbari Gourdani F, Ghadam P, Heravi MM, et al. Immobilized galactose oxidase in alginate gel(GO-Bead): a versatile and efficient biocatalyst for the regioselective synthesis of 1, 4-disubstitued-1, 2, 3-triazoles: click reaction[J]. J Iran Chem Soc, 2021, 18(6): 1471-1478.
doi: 10.1007/s13738-020-02128-1 |
[53] |
Kaminska A, Hołyst R. Immobilization of galactose oxidase on self-assembled monolayers of thiols on Au and Ag surfaces[J]. J Raman Spectrosc, 2012, 43(7): 959-962.
doi: 10.1002/jrs.v43.7 URL |
[54] | 侯超, 张申平, 马跃龙. 乳糖酶固定化研究进展[J]. 食品安全质量检测学报, 2022, 13(19): 6346-6353. |
Hou C, Zhang SP, Ma YL. Research progress on immobilization of lactase[J]. J Food Saf Qual, 2022, 13(19): 6346-6353. | |
[55] | 张璟譞, 高兵兵, 何冰芳. 生物催化中的酶固定化研究进展[J]. 生物加工过程, 2022, 20(1): 9-19, 40. |
Zhang JX, Gao BB, He BF. Research progress of enzyme immobilized in biocatalysis[J]. Chin J Bioprocess Eng, 2022, 20(1): 9-19, 40. | |
[56] |
Mattey AP, Sangster JJ, Ramsden JI, et al. Natural heterogeneous catalysis with immobilised oxidase biocatalysts[J]. RSC Adv, 2020, 10(33): 19501-19505.
doi: 10.1039/d0ra03618h pmid: 35515476 |
[57] |
Çevik E, Şenel M, Fatih Abasıyanık M. Construction of biosensor for determination of galactose with galactose oxidase immobilized on polymeric mediator contains ferrocene[J]. Curr Appl Phys, 2010, 10(5): 1313-1316.
doi: 10.1016/j.cap.2010.03.014 URL |
[58] |
Kondakova L, Yanishpolskii V, Tertykh V, et al. Galactose oxidase immobilized on silica in an analytical determination of galactose-containing carbohydrates[J]. Anal Sci, 2007, 23(1): 97-101.
pmid: 17213632 |
[59] | 冯慧, 韩娟, 黄文睿, 等. 纳米花型酶-无机杂化固定化酶研究进展[J]. 化学通报, 2021, 84(12): 1263-1273. |
Feng H, Han J, Huang WR, et al. Research progress in nanoflower enzyme-inorganic hybrid immobilized enzyme[J]. Chemistry, 2021, 84(12): 1263-1273. | |
[60] |
Chen Y, Zou JX, Sun J, et al. Immobilization using Cu(II)and Zr(IV): persistent and highly efficient activation of galactose oxidase by in situ generation of hydroxyl radicals in concert with in situ generation of O2[J]. Chem Eng J, 2022, 435: 134819.
doi: 10.1016/j.cej.2022.134819 URL |
[1] | 陈金行, 张逸, 张军涛, 未本美, 王宏勋, 郑明明. 固定化脂肪酶的创制及其在乙酸肉桂酯无溶剂制备中的应用[J]. 生物技术通报, 2023, 39(9): 97-104. |
[2] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[3] | 曲戈, 孙周通. 催化混杂性驱动的酶功能重塑[J]. 生物技术通报, 2023, 39(4): 1-9. |
[4] | 王慕镪, 陈琦, 马薇, 李春秀, 欧阳鹏飞, 许建和. 机器学习方法在酶定向进化中的应用进展[J]. 生物技术通报, 2023, 39(4): 38-48. |
[5] | 朱永安, 王淼, 曹静, 喻鹤, 曹振, 金茂俊, 王静, 佘永新. 农药残留检测关键用酶固定化研究进展[J]. 生物技术通报, 2022, 38(1): 258-268. |
[6] | 张雪, 谭玉萌, 蒋海霞, 杨广宇. 基于单细胞超高通量筛选的α-1,2-岩藻糖基转移酶定向进化[J]. 生物技术通报, 2022, 38(1): 289-298. |
[7] | 孙宝婷, 邱萌霞, 王子辰, 王梓源, 崔建东, 贾士儒. 半胱氨酸辅助的酶@ZIF-8固定化酶制备及其特性研究[J]. 生物技术通报, 2021, 37(8): 221-232. |
[8] | 陈明雨, 倪烜, 司友斌, 孙凯. 固定化真菌漆酶在环境有机污染修复中的应用研究进展[J]. 生物技术通报, 2021, 37(6): 244-258. |
[9] | 陈春, 宿玲恰, 夏伟, 吴敬. 定向进化提高来源于Arthrobacter ramosus 的MTHase的热稳定性[J]. 生物技术通报, 2021, 37(3): 84-91. |
[10] | 芦尚德, 刘婧婧, 冯一平, 赵鹏, 徐仰仓. 固定化小球藻产氧及光合速率的研究[J]. 生物技术通报, 2021, 37(3): 92-98. |
[11] | 徐刘佳, 郑明明. 皮克林乳液酶反应体系的构建与应用研究进展[J]. 生物技术通报, 2021, 37(2): 187-194. |
[12] | 王豪, 唐禄鑫, 马鸿飞, 钱坤, 司静, 崔宝凯. 东方栓孔菌漆酶的固定化及其对不同类型染料的脱色作用[J]. 生物技术通报, 2021, 37(11): 142-157. |
[13] | 张小红, 陶红, 王亚娟, 李一春, 张锐. 固定化微球降解土壤中PAEs效果及影响因素[J]. 生物技术通报, 2021, 37(1): 223-233. |
[14] | 王惠兰, 吴金勇, 陈祥松, 袁丽霞, 朱薇薇, 姚建铭. N-乙酰神经氨酸醛缩酶的固定化及固定化酶性质研究[J]. 生物技术通报, 2020, 36(6): 165-173. |
[15] | 孙凯, 陈正杰, 汪登洋, 束茹玉, 吴吉, 韦凡. 固定化漆酶去除废水中双酚A[J]. 生物技术通报, 2020, 36(12): 188-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||