生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 281-293.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0641
王斌1(), 袁晓1,2, 蒋园园1, 王玉昆1, 肖艳辉1, 何金明1()
收稿日期:
2023-07-05
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
何金明,男,博士,教授,研究方向:芳香植物资源研究及利用;E-mail: hjm@sgu.edu.cn作者简介:
王斌,男,博士,副教授,研究方向:芳香植物资源研究及利用;E-mail: b_wang@sgu.edu.cn
基金资助:
WANG Bin1(), YUAN Xiao1,2, JIANG Yuan-yuan1, WANG Yu-kun1, XIAO Yan-hui1, HE Jin-ming1()
Received:
2023-07-05
Published:
2024-01-26
Online:
2024-02-06
摘要:
【目的】薄荷精油是日化、医药和食品工业中的重要原料,bHLH转录因子在调控植物挥发性次生代谢产物合成中具有重要作用。探究bHLH蛋白在薄荷挥发性物质合成调控中的作用,为通过代谢或基因工程改良薄荷种质提供重要基因资源,拓展有关植物挥发性次生代谢产物合成途径与调控机制的认识。【方法】利用转录组测序和RT-qPCR技术分析bHLH96在薄荷根、茎、叶中的表达,并通过RT-PCR法克隆其全长序列,再利用DNA重组技术构建植物表达载体pBI121-bHLH96,利用农杆菌介导法在薄荷叶片中过表达,检测过表达bHLH96对薄荷叶片萜烯化合物含量和合成相关基因表达的影响。【结果】薄荷bHLH96的编码区全长861 bp,编码286个氨基酸残基。薄荷bHLH96是一个细胞核定位蛋白,植物bHLH96蛋白间的序列相似性为45.45%-73.68%,薄荷bHLH96与薰衣草LaMYC4和丹参SmbHLH94等唇形科植物bHLH蛋白的亲缘关系较近。在薄荷叶片中瞬时过表达bHLH96,显著影响15种萜烯化合物的相对含量。过表达bHLH96显著上调萜烯合成相关基因OC2、SM1、KS1、ND和EAO1的表达,显著下调NLS1、LS1和iPR的表达。【结论】薄荷bHLH96可能通过调控萜烯合成相关基因的表达,影响相关萜合成酶的活性,从而调控薄荷萜烯物质的合成。
王斌, 袁晓, 蒋园园, 王玉昆, 肖艳辉, 何金明. bHLH96的克隆及其在薄荷萜烯生物合成调控中的功能[J]. 生物技术通报, 2024, 40(1): 281-293.
WANG Bin, YUAN Xiao, JIANG Yuan-yuan, WANG Yu-kun, XIAO Yan-hui, HE Jin-ming. Cloning of bHLH96 Gene and Its Roles in Regulating the Biosynthesis of Peppermint Terpenes[J]. Biotechnology Bulletin, 2024, 40(1): 281-293.
引物名称 Primer name | 正向序列 Forward sequence(5'-3') | 反向序列 Reverse sequence(5'-3') | 用途 Usage |
---|---|---|---|
bHLH96 | ATGTCACTAGAGGCTGCGATGG | TTAGCTACAAATTGATTCTTCTTGAATC | TA克隆TA cloning |
bHLH96-GFP | acgggggactctagaggatccATGTCACTAGAGGCTGCGATGG | ggactgaccacccggggatccGCTACAAATTGATTCTTCTTGAATCAT | 亚细胞定位 Subcellular localization |
Actin | AGCAAAAACAAGCTCTGCCG | TGGAATAGGACCTCAGGGCA | 实时荧光定量 |
bHLH96 | AGCCCACGAAGAACAAGGAG | TAGGAAGGGGGCATGATGGA | Quantitative real-time PCR |
OC2 | TGTAAAATCCCCAACCCCCG | ACGGTGCTTACAAAGGAGCA | |
SM1 | GGGGATGTCAACTAGGCACC | CATGTCCCACTTCGTCGGAA | |
KS1 | TTGGAAGCAGGCGAGGAAAT | TACCGATTTGCCCCTCGAAC | |
ND | GACATCGTCGATCCTGCCTC | GTGCCTGCATTGTTCACCAG | |
EAO1 | TTGAGCGCAGTGTACGTCTT | GCTCTCCACCAATGGGAACA | |
NLS1 | CACCAGATTGGGCTCACCAT | AGTACTCTTTTGCCCCTGGC | |
LS | AACTTTGTGAACGACGCAGC | GCATCCACCAAATCCCTCCA | |
iPR | TCCTCCTCCTTCGGGAGTTT | CAGACTATCCTCGTCCCCCA |
表1 引物信息
Table 1 Primer information
引物名称 Primer name | 正向序列 Forward sequence(5'-3') | 反向序列 Reverse sequence(5'-3') | 用途 Usage |
---|---|---|---|
bHLH96 | ATGTCACTAGAGGCTGCGATGG | TTAGCTACAAATTGATTCTTCTTGAATC | TA克隆TA cloning |
bHLH96-GFP | acgggggactctagaggatccATGTCACTAGAGGCTGCGATGG | ggactgaccacccggggatccGCTACAAATTGATTCTTCTTGAATCAT | 亚细胞定位 Subcellular localization |
Actin | AGCAAAAACAAGCTCTGCCG | TGGAATAGGACCTCAGGGCA | 实时荧光定量 |
bHLH96 | AGCCCACGAAGAACAAGGAG | TAGGAAGGGGGCATGATGGA | Quantitative real-time PCR |
OC2 | TGTAAAATCCCCAACCCCCG | ACGGTGCTTACAAAGGAGCA | |
SM1 | GGGGATGTCAACTAGGCACC | CATGTCCCACTTCGTCGGAA | |
KS1 | TTGGAAGCAGGCGAGGAAAT | TACCGATTTGCCCCTCGAAC | |
ND | GACATCGTCGATCCTGCCTC | GTGCCTGCATTGTTCACCAG | |
EAO1 | TTGAGCGCAGTGTACGTCTT | GCTCTCCACCAATGGGAACA | |
NLS1 | CACCAGATTGGGCTCACCAT | AGTACTCTTTTGCCCCTGGC | |
LS | AACTTTGTGAACGACGCAGC | GCATCCACCAAATCCCTCCA | |
iPR | TCCTCCTCCTTCGGGAGTTT | CAGACTATCCTCGTCCCCCA |
图1 薄荷bHLH家族基因的表达模式及bHLH96的表达 A:薄荷不同组织中差异表达的bHLH家族基因的表达热图;B:转录组测序得到的bHLH96表达量;C:RT-qPCR法测定的bHLH96表达量;L:叶片,S:茎,R:根;1-3表示3个生物学重复;黑色方框中显示3个在叶片中高表达的bHLH基因;不同小写字母表示不同组织间差异显著(P≤0.05)。下同
Fig. 1 Expression patterns of bHLH family genes and bHLH96 expression A: Expression heatmap of bHLH family genes differentially expressed in different tissues of peppermint. B: Expression values of bHLH96 from RNA-Seq. C: Expression level of bHLH96 measured by RT-qPCR method. L: Leaf. S: Shoot. R: Root. 1-3 represent three biological replicates; three bHLH genes that are highly expressed in leaves are shown in the black box. Different lowercase letters indicate significant differences between different tissues(P≤0.05). The same below
图2 薄荷bHLH96的PCR扩增产物电泳图 A:以薄荷叶片cDNA为模板扩增的DNA片段;B:以重组质粒为模板扩增的DNA片段;M:不同分子量的DNA标准物;1-4:bHLH96全长序列的扩增产物(1:以cDNA为模板扩增的DNA片段;2-4:以重组质粒为模板扩增的DNA片段)
Fig. 2 Electrophoresis maps of PCR amplification products of peppermint bHLH96 gene A: DNA fragments amplified using peppermint leaf cDNA as a template. B: DNA fragments amplified using recombinant plasmids as templates. M: DNA marker. 1-4: DNA amplified products of the full-length sequence of bHLH96 gene(1: DNA fragment amplified using cDNA as a template, 2-4: DNA fragments amplified using recombinant plasmids as templates)
图3 薄荷bHLH96的核苷酸序列(浅绿色背景)和推导的氨基酸序列(浅蓝色背景) *代表终止密码子
Fig. 3 Nucleotide sequence(light green background)and the deduced amino acid sequence(light blue background)of peppermint bHLH96 gene * indicates stop codon
图5 薄荷bHLH96与模式植物bHLH96氨基酸序列比对(A)和保守结构域保守性分析(B) 下划线显示bHLH蛋白的保守结构域序列;ObbHLH96:野生水稻,XP_006649528.1;AtbHLH96:拟南芥,NP_001320586.1;NtbHLH96:烟草,XP_016477918.1;SlbHLH96:番茄,XP_004250124.1。下同
Fig. 5 Amino acid sequence alignment(A)and conservation analysis of conserved domain(B)of peppermint bHLH96 and bHLH96 from model plants The underlined line indicates conserved domain sequences of bHLH proteins. ObbHLH96: Oryza brachyantha, XP_006649528.1. AtbHLH96: Arabidopsis thaliana, NP_001320586.1; NtbHLH96: Nicotiana tabacum, XP_016477918.1; SlbHLH96: Solanum lycopersicum, XP_004250124.1. The same below
品种 Species | 薄荷 Peppermint | 短花药野生稻 Oryza brachyantha | 拟南芥 Arabidopsis | 烟草 Tobacco | 番茄 Tomato |
---|---|---|---|---|---|
薄荷 Peppermint | 100 | ||||
短花药野生稻 Oryza brachyantha | 46.71 | 100 | |||
拟南芥 Arabidopsis | 46.44 | 45.45 | 100 | ||
烟草 Tobacco | 55.74 | 60.52 | 47.04 | 100 | |
番茄 Tomato | 52.73 | 48.62 | 48.03 | 73.68 | 100 |
表2 不同植物bHLH96氨基酸序列一致性比较
Table 2 Comparison in the amino acid sequences of bHLH96 proteins in different plant species %
品种 Species | 薄荷 Peppermint | 短花药野生稻 Oryza brachyantha | 拟南芥 Arabidopsis | 烟草 Tobacco | 番茄 Tomato |
---|---|---|---|---|---|
薄荷 Peppermint | 100 | ||||
短花药野生稻 Oryza brachyantha | 46.71 | 100 | |||
拟南芥 Arabidopsis | 46.44 | 45.45 | 100 | ||
烟草 Tobacco | 55.74 | 60.52 | 47.04 | 100 | |
番茄 Tomato | 52.73 | 48.62 | 48.03 | 73.68 | 100 |
图6 植物bHLH蛋白系统发育分析 ▲显示薄荷bHLH96;薰衣草LaMYC4的氨基酸序列见文献[20]
Fig. 6 Phylogenetic analysis of plant bHLH proteins ▲ indicates peppermint bHLH96. The amino acid sequence of lavender LaMYC4 can be found in the reference[20]
序号 No. | 化合物 Compound | 保留时间 Retention/min | 相对含量Relative content/% | |
---|---|---|---|---|
CK | OE | |||
1 | 己醛 Hexanal | 3.80 | 0.36±0.03b | 0.65±0.05a |
2 | (E)-2-己烯醛(E)-2-Hexenal | 4.76 | 1.10±0.07b | 2.66±0.06a |
3 | α-蒎烯 α-Pinene | 6.61 | 2.48±0.02b | 4.23±0.07a |
4 | 香桧烯 Sabinene | 7.63 | 0.89±0.02b | 1.32±0.32a |
5 | L-β-蒎烯 L-β-Pinene | 7.72 | 1.91±0.08b | 3.40±0.04a |
6 | β-月桂烯 β-Myrcene | 8.07 | 0.99±0.05b | 1.78±0.04a |
7 | 3-辛醇 3-Octanol | 8.17 | 1.10±0.06 | 1.00±0.20 |
8 | 正辛醛 Octanal | 8.40 | 0.07±0.00b | 0.11±0.00a |
9 | D-柠檬烯 D-Limonene | 9.12 | 0.46±0.08b | 0.85±0.01a |
10 | 桉叶油醇 Eucalyptol | 9.21 | 0.31±0.02b | 0.53±0.00a |
11 | 顺式-β-罗勒烯 cis-β-Ocimene | 9.36 | 0.14±0.00b | 0.35±0.02a |
12 | 异胡薄荷醇 Isopulegol | 12.45 | 0.47±0.00a | 0.34±0.02b |
13 | 左旋薄荷酮 L-Menthone | 12.71 | 7.51±0.44 | 7.96±1.38 |
14 | 顺式薄荷酮 cis-Menthone | 13.00 | 3.45±0.27 | 3.54±0.24 |
15 | 薄荷醇 Menthol | 13.40 | 63.1±4.38 | 64.16±4.25 |
16 | 异薄荷醇 Isomenthol | 13.58 | 0.12±0.01 | 0.12±0.01 |
17 | α-松油醇 α-Terpineol | 13.77 | 0.16±0.01 | 0.18±0.01 |
18 | 顺式-3-己烯异戊酸cis-3-Hexenyl isovalerate | 14.97 | 0.16±0.01a | 0.11±0.01b |
19 | (+)-胡薄荷酮(±)-Pulegone | 15.13 | 10.23±6.00a | 3.45±0.17b |
20 | 胡椒酮 Piperitone | 15.52 | 0.51±0.08a | 0.37±0.00b |
21 | 石竹烯Caryophyllene | 19.92 | 0.44±0.04 | 0.52±0.05 |
22 | 大根香叶烯 Germacrene D | 21.46 | 1.27±0.01b | 1.79±0.23a |
23 | 双环大牛儿烯 Bicyclogermacrene | 21.83 | 0.15±0.02 | 0.19±0.04 |
表3 CK和OE薄荷叶片中的挥发性化合物种类和相对含量
Table 3 Types and relative contents of volatile compounds in the leaves of CK and OE peppermint seedlings
序号 No. | 化合物 Compound | 保留时间 Retention/min | 相对含量Relative content/% | |
---|---|---|---|---|
CK | OE | |||
1 | 己醛 Hexanal | 3.80 | 0.36±0.03b | 0.65±0.05a |
2 | (E)-2-己烯醛(E)-2-Hexenal | 4.76 | 1.10±0.07b | 2.66±0.06a |
3 | α-蒎烯 α-Pinene | 6.61 | 2.48±0.02b | 4.23±0.07a |
4 | 香桧烯 Sabinene | 7.63 | 0.89±0.02b | 1.32±0.32a |
5 | L-β-蒎烯 L-β-Pinene | 7.72 | 1.91±0.08b | 3.40±0.04a |
6 | β-月桂烯 β-Myrcene | 8.07 | 0.99±0.05b | 1.78±0.04a |
7 | 3-辛醇 3-Octanol | 8.17 | 1.10±0.06 | 1.00±0.20 |
8 | 正辛醛 Octanal | 8.40 | 0.07±0.00b | 0.11±0.00a |
9 | D-柠檬烯 D-Limonene | 9.12 | 0.46±0.08b | 0.85±0.01a |
10 | 桉叶油醇 Eucalyptol | 9.21 | 0.31±0.02b | 0.53±0.00a |
11 | 顺式-β-罗勒烯 cis-β-Ocimene | 9.36 | 0.14±0.00b | 0.35±0.02a |
12 | 异胡薄荷醇 Isopulegol | 12.45 | 0.47±0.00a | 0.34±0.02b |
13 | 左旋薄荷酮 L-Menthone | 12.71 | 7.51±0.44 | 7.96±1.38 |
14 | 顺式薄荷酮 cis-Menthone | 13.00 | 3.45±0.27 | 3.54±0.24 |
15 | 薄荷醇 Menthol | 13.40 | 63.1±4.38 | 64.16±4.25 |
16 | 异薄荷醇 Isomenthol | 13.58 | 0.12±0.01 | 0.12±0.01 |
17 | α-松油醇 α-Terpineol | 13.77 | 0.16±0.01 | 0.18±0.01 |
18 | 顺式-3-己烯异戊酸cis-3-Hexenyl isovalerate | 14.97 | 0.16±0.01a | 0.11±0.01b |
19 | (+)-胡薄荷酮(±)-Pulegone | 15.13 | 10.23±6.00a | 3.45±0.17b |
20 | 胡椒酮 Piperitone | 15.52 | 0.51±0.08a | 0.37±0.00b |
21 | 石竹烯Caryophyllene | 19.92 | 0.44±0.04 | 0.52±0.05 |
22 | 大根香叶烯 Germacrene D | 21.46 | 1.27±0.01b | 1.79±0.23a |
23 | 双环大牛儿烯 Bicyclogermacrene | 21.83 | 0.15±0.02 | 0.19±0.04 |
图7 薄荷叶片中瞬时过表达bHLH96对相关TPS基因表达的影响 CK:过表达pBI121空载;OE:过表达bHLH96
Fig. 7 Effects of transient overexpression of bHLH96 in the peppermint leaves on the expressions of TPS genes CK: Overexpression of pBI121 plasmid. OE: Overexpression of bHLH96
[1] | Tholl D. Biosynthesis and biological functions of terpenoids in plants[J]. Adv Biochem Eng Biotechnol, 2015, 148: 63-106. |
[2] |
冯是燕, 杜江超, 杨嘉莹, 等. 5种唇形科植物挥发油的化学成分及抗流感病毒活性研究[J]. 中国药学杂志, 2022, 57(11): 896-909.
doi: 10.11669/cpj.2022.11.006 |
Feng SY, Du JC, Yang JY, et al. Chemical constituents and anti-influenza virus activities of volatile oils from five Lamiaceae plants[J]. China Ind Econ, 2022, 57(11): 896-909. | |
[3] |
Kippes N, Tsai H, Lieberman M, et al. Diploid mint(M. longifolia)can produce spearmint type oil with a high yield potential[J]. Sci Rep, 2021, 11(1): 23521.
doi: 10.1038/s41598-021-02835-6 |
[4] | 尹东阁, 王开心, 刘曼婷, 等. 《中华人民共和国药典》2020年版收载含冰片、薄荷的中药成方制剂质量标准分析[J]. 中华中医药学刊, 2023, 41(2): 24-31, 10012. |
Yin DG, Wang KX, Liu MT, et al. Analysis of quality standard of Chinese medicine preparations containing Binpian(borneol)and bohe(mint)in 2020 edition of Chinese pharmacopoeia[J]. Chin arch tradit Chin med, 2023, 41(2): 24-31, 10012. | |
[5] | 张焕, 王玉龙, 刘秋燕, 等. 浅析薄荷在方剂中的配伍应用[J]. 环球中医药, 2015(7): 833-835. |
Zhang H, Wang YL, Liu QY, et al. Analysis of the compatibility and application of mint in prescriptions[J]. Glob Tradit Chin Med, 2015(7): 833-835. | |
[6] | 韩婷, 杜方. 植物萜烯类合成的转录调控研究进展[J]. 山西农业科学, 2020, 48(10): 1686-1692. |
Han T, Du F. Research progress on regulation of transcription factors related to plant terpene sythesis[J]. J Shanxi Agric Sci, 2020, 48(10): 1686-1692. | |
[7] | 袁瑞瑛, 卓玛东智, 韦玉璐, 等. 迷迭香中2个新松香烷型二萜化合物[J]. 中草药, 2019, 50(20): 4853-4858. |
Yuan RY, Zhuoma DZ, Wei YL, et al. Two new abietane diterpenes from Rosmarinus officinalis[J]. Chin Tradit Herb Dru, 2019, 50(20): 4853-4858. | |
[8] | 冷家归, 于二汝, 李德文, 等. 黔引迷迭香主要酚类成分分析及抗氧化活性比较[J]. 热带作物学报, 2018, 39(8): 1636-1643. |
Leng JG, Yu ER, Li DW, et al. Polyphenols components and antioxidant activities of Rosmarinus officinalis L.[J]. Chin J Trop Crops, 2018, 39(8): 1636-1643. | |
[9] |
Dudareva N, Klempien A, Muhlemann JK, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytol, 2013, 198(1): 16-32.
doi: 10.1111/nph.12145 pmid: 23383981 |
[10] | 李莉, 高凌云, 董越, 等. 植物类异戊二烯生物合成相关酶基因研究进展[J]. 浙江师范大学学报: 自然科学版, 2008, 31(4): 461-466. |
Li L, Gao LY, Dong Y, et al. Advances of enzymes and its genes in the plant isoprenoids biosynthesis pathways[J]. J Zhejiang Norm Univ Nat Sci, 2008, 31(4): 461-466. | |
[11] |
Yang CQ, Marillonnet S, Tissier A. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato(Solanum lycopersicum)[J]. Plant J, 2021, 107(4): 1102-1118.
doi: 10.1111/tpj.v107.4 URL |
[12] |
Li X, Xu YY, Shen SL, et al. Transcription factor CitERF71 activates the terpene synthase gene CitTPS16involved in the synthesis of E-geraniol in sweet orange fruit[J]. J Exp Bot, 2017, 68(17): 4929-4938.
doi: 10.1093/jxb/erx316 URL |
[13] | 张凯伦, 罗祖良, 郭玉华, 等. bHLH转录因子调控药用植物萜类化合物生物合成的研究进展[J]. 中国现代中药, 2017, 19(1): 142-147. |
Zhang KL, Luo ZL, Guo YH, et al. Research progress on regulation of bHLH transcription factors on biosynthetic pathway of terpenoids in medicinal plants[J]. Mod Chin Med, 2017, 19(1): 142-147. | |
[14] |
Hao YQ, Zong XM, Ren P, et al. Basic helix-loop-helix(bHLH)transcription factors regulate a wide range of functions in Arabidopsis[J]. Int J Mol Sci, 2021, 22(13): 7152.
doi: 10.3390/ijms22137152 URL |
[15] |
Hong GJ, Xue XY, Mao YB, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. Plant Cell, 2012, 24(6): 2635-2648.
doi: 10.1105/tpc.112.098749 URL |
[16] |
Zhou YY, Sun W, Chen JF, et al. SmMYC2a and SmMYC2b played similar but irreplaceable roles in regulating the biosynthesis of tanshinones and phenolic acids in Salvia miltiorrhiza[J]. Sci Rep, 2016, 6: 22852.
doi: 10.1038/srep22852 |
[17] |
Wang B, Lin L, Yuan X, et al. Low-level cadmium exposure induced hormesis in peppermint young plant by constantly activating antioxidant activity based on physiological and transcriptomic analyses[J]. Front Plant Sci, 2023, 14: 1088285.
doi: 10.3389/fpls.2023.1088285 URL |
[18] |
Lorenzo O, Chico JM, Sánchez-Serrano JJ, et al. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis[J]. Plant Cell, 2004, 16(7): 1938-1950.
doi: 10.1105/tpc.022319 pmid: 15208388 |
[19] | Li JR, Li H, Wang YM, et al. Decoupling subgenomes within hybrid lavandin provide new insights into speciation and monoterpenoid diversification of Lavandula[J]. Plant Biotechnol J, 2023. doi: 10.1111/pbi.14115. |
[20] |
Dong Y, Zhang W, Li J, et al. The transcription factor LaMYC4 from lavender regulates volatile Terpenoid biosynthesis[J]. BMC Plant Biol, 2022, 22(1): 289.
doi: 10.1186/s12870-022-03660-3 pmid: 35698036 |
[21] |
李宇, 李素贞, 陈茹梅, 等. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1474 |
Li Y, Li SZ, Chen RM, et al. Advances in the regulation of iron homeostasis by bHLH transcription factors in plant[J]. Biotechnol Bull, 2023, 39(7): 26-36.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1474 |
|
[22] |
Qi TC, Huang H, Wu DW, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. Plant Cell, 2014, 26(3): 1118-1133.
doi: 10.1105/tpc.113.121731 URL |
[23] |
Koini MA, Alvey L, Allen T, et al. High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4[J]. Curr Biol, 2009, 19(5): 408-413.
doi: 10.1016/j.cub.2009.01.046 pmid: 19249207 |
[24] |
Xie QM, Xiong C, Yang QH, et al. A novel regulatory complex mediated by Lanata(Ln)controls multicellular trichome formation in tomato[J]. New Phytol, 2022, 236(6): 2294-2310.
doi: 10.1111/nph.v236.6 URL |
[25] |
Chalvin C, Drevensek S, Dron M, et al. Genetic control of glandular trichome development[J]. Trends Plant Sci, 2020, 25(5): 477-487.
doi: S1360-1385(19)30350-4 pmid: 31983619 |
[26] |
Zhao H, Ren S, Yang H, et al. Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application[J]. Biomed Pharmacother, 2022, 154: 113559.
doi: 10.1016/j.biopha.2022.113559 URL |
[27] |
Waseem M, Li ZG. Overexpression of tomato SlbHLH22 transcription factor gene enhances fruit sensitivity to exogenous phytohormones and shortens fruit shelf-life[J]. J Biotechnol, 2019, 299: 50-56.
doi: 10.1016/j.jbiotec.2019.04.012 URL |
[28] |
Zhu Z, Chen G, Guo X, et al. Overexpression of SlPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato[J]. Sci Rep, 2017, 7(1): 5786.
doi: 10.1038/s41598-017-04092-y |
[29] |
Liang YF, Ma F, Li BY, et al. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato[J]. Hortic Res, 2022, 9: uhac198.
doi: 10.1093/hr/uhac198 URL |
[30] |
Zhai QZ, Yan LH, Tan D, et al. Phosphorylation-coupled proteolysis of the transcription factor MYC2 is important for jasmonate-signaled plant immunity[J]. PLoS Genet, 2013, 9(4): e1003422.
doi: 10.1371/journal.pgen.1003422 URL |
[31] | Pre M, Siberil Y, Memelink J, et al. Isolation by the yeast one-hybrid system of cDNAs encoding transcription factors that bind to the G-Box element of the strictosidine synthase gene promoter from Catharanthus roseus[J]. Int J Bio-chromat, 2000, 5(3): 229-244. |
[32] | 李书涛. 调控紫杉醇合成转录因子TcMYC和TcWRKY1的克隆及功能研究[D]. 武汉: 华中科技大学, 2012. |
Li ST. Molecular cloning and functional study of transcription factors TcMYC and TcWRKY1 that regulate the taxol biosynthesis[D]. Wuhan: Huazhong University of Science and Technology, 2012. | |
[33] |
Karunanithi PS, Zerbe P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity[J]. Front Plant Sci, 2019, 10: 1166.
doi: 10.3389/fpls.2019.01166 pmid: 31632418 |
[34] | Yang M, Liu GH, Yamamura Y, et al. Identification and functional characterization of ent-kaurene synthase gene in Ilex latifolia[J]. Beverage Plant Res, 2021, 1(1): 1-7. |
[35] |
Helliwell CA, Chandler PM, Poole A, et al. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway[J]. Proc Natl Acad Sci USA, 2001, 98(4): 2065-2070.
doi: 10.1073/pnas.98.4.2065 pmid: 11172076 |
[36] |
Xue Z, Tan Z, Huang A, et al. Identification of key amino acid residues determining product specificity of 2,3-oxidosqualene cyclase in Oryza species[J]. New Phytol, 2018, 218(3): 1076-1088.
doi: 10.1111/nph.2018.218.issue-3 URL |
[37] | 王海棠, 于盱, 刘艳, 等. 薄荷属植物分子生物学研究进展[J]. 江西农业学报, 2012, 24(12): 59-63. |
Wang HT, Yu X, Liu Y, et al. Research advance in molecular biology of plants in Mentha genus[J]. Acta Agric Jiangxi, 2012, 24(12): 59-63. | |
[38] | 徐晨, 李火根, 杨秀莲, 等. 桂花(+)-新薄荷醇脱氢酶基因OfMNR的克隆与表达分析[J]. 分子植物育种, 2016, 14(6): 1389-1395. |
Xu C, Li HG, Yang XL, et al. Gene cloning and expression analysis of OfMNR gene encoding Osmanthus fragrans(+)-neomenthol dehydrogenase[J]. Mol Plant Breed, 2016, 14(6): 1389-1395. |
[1] | 唐伟林, 康琴, 汪霞, 谌明洋, 孙欣江, 王棵, 侯凯, 吴卫, 徐东北. 薄荷茉莉酸受体McCOI1a基因的克隆与表达模式分析[J]. 生物技术通报, 2024, 40(1): 270-280. |
[2] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[3] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[4] | 黄亚宁, 张海娇, 韩玉谦, 刘尊英. 超临界CO2与姜精油协同对副溶血弧菌杀菌效果的影响与机制研究[J]. 生物技术通报, 2023, 39(5): 297-305. |
[5] | 赵忠娟, 杨凯, 扈进冬, 魏艳丽, 李玲, 徐维生, 李纪顺. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235. |
[6] | 冯建英, 李立芹, 鲁黎明. 马铃薯bHLH转录因子家族全基因组鉴定与表达分析[J]. 生物技术通报, 2022, 38(2): 21-33. |
[7] | 山草梅, 叶蕾, 张连虎, 况卫刚, 孙晓棠, 马建, 崔汝强. 水稻抗潜根线虫基因OsRAI1的克隆及功能分析[J]. 生物技术通报, 2021, 37(7): 146-155. |
[8] | 胡建燃, 李平, 铁军, 金山. 紫丁香花精油的抗氧化和抗肿瘤活性研究[J]. 生物技术通报, 2019, 35(12): 16-23. |
[9] | 赵忠娟,魏艳丽,李纪顺,王贻莲,杨合同. 一种根癌农杆菌介导的耐盐椒样薄荷含芽茎段转化系统[J]. 生物技术通报, 2017, 33(7): 126-132. |
[10] | 于盱,梁呈元,刘艳,李维林. 薄荷GPPS基因原核表达及RNA干扰载体构建[J]. 生物技术通报, 2014, 0(9): 84-88. |
[11] | 高艳,陈光辉,陈秀娟,谢丽琼. 植物细胞壁纤维素生物合成的调控[J]. 生物技术通报, 2014, 0(1): 1-7. |
[12] | 梁越;刘洋;田兆丰;邹媛媛;左山;刘琳;冯雪;张静;张飞云;. 薄荷根内生及根际细菌多样性探究[J]. , 2010, 0(10): 104-115. |
[13] | . 山香挥发油的化学组成和杀虫活性[J]. , 2004, 0(03): 58-58. |
[14] | 汪开. 超高浓度的CO_2可提高香精油的离体产量[J]. , 2003, 0(04): 49-49. |
[15] | 汪开治. 台湾杉香精油可杀灭居室尘螨[J]. , 2002, 0(05): 53-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||