生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 202-213.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0202
马云涛(), 胡丽娜, 孙文婧, 唐莲庚, 孙思远, 邓欣雨, 孙黎()
收稿日期:
2024-03-02
出版日期:
2024-11-26
发布日期:
2024-08-01
通讯作者:
孙黎,女,博士,教授,研究方向:植物与病原菌互作;E-mail: sunlishz@126.com作者简介:
马云涛,男,研究方向:植物与病原菌互作;E-mail: 2944551363@qq.com
基金资助:
MA Yun-tao(), HU Li-na, SUN Wen-jing, TANG Lian-geng, SUN Si-yuan, DENG Xin-yu, SUN Li()
Received:
2024-03-02
Published:
2024-11-26
Online:
2024-08-01
摘要:
【目的】 梨火疫病是由解淀粉欧文氏菌(Erwinia amylovora)引起的一种重要细菌病害,严重影响梨、苹果等蔷薇仁果类果树的生产安全。从海棠树(Malus spectabilis)果实及其根际土壤分离得到对解淀粉欧文氏菌具有较强拮抗作用的优良菌株,为梨火疫病生防菌剂的开发与利用提供菌种资源及理论支撑。【方法】 采用平板稀释法分离菌株,以解淀粉欧文氏菌(Erwinia amylovora)为指示菌,利用平板对峙法和牛津杯扩散法初筛和复筛具有拮抗效果的菌株,结合形态学观察、生理生化反应和16S rDNA测序对拮抗菌进行鉴定,确定其分类地位;以单因素试验和正交试验对发酵条件进行优化;将优化的发酵液在新疆野苹果(Malus sieversii)离体果实上进行温室防效测定。【结果】 分离得到4株具有较强拮抗作用的菌株(JK1、JK2、JK3、JK4),其中拮抗效果最强的菌株JK2抑菌效价达到359.7 mm/mL,结合该菌形态学特征、生理生化特性和16S rDNA基因序列分析,将菌株JK2鉴定为贝莱斯芽孢杆菌(Bacillus velezensis)。优化后的最佳培养条件:初始pH为6.66,温度为30.6℃,接种量为3.9%,转速为208 r/min。在该优化条件下,活菌数可达到1.29×109 CFU/mL,相比优化前提高了53.1%;温室防效测定结果表明,接种菌株JK2果实的保护性试验病情指数显著降低,防效达到65.88%,且保护性防效优于治疗性防效。【结论】 菌株JK2对梨火疫病具有较好的防治作用,具有较大的应用潜力,可作为开发梨火疫病生防制剂的候选菌株。
马云涛, 胡丽娜, 孙文婧, 唐莲庚, 孙思远, 邓欣雨, 孙黎. 梨火疫病拮抗菌JK2的筛选鉴定及发酵条件优化[J]. 生物技术通报, 2024, 40(11): 202-213.
MA Yun-tao, HU Li-na, SUN Wen-jing, TANG Lian-geng, SUN Si-yuan, DENG Xin-yu, SUN Li. Screening and Identification of Antagonistic Bacterium JK2 Against Fire Blight Disease and the Optimization of Its Fermentation Conditions[J]. Biotechnology Bulletin, 2024, 40(11): 202-213.
拮抗菌 Antagonistic bacteria | JK1 | JK2 | JK3 | JK4 |
---|---|---|---|---|
抑菌圈直径Diameter of bacteriostatic ring/mm | 4.0±0.1c | 17.9±0.2a | 4.0±0.1c | 13.1±0.2b |
抑菌效价Antibacterial potency/(mm·mL-1) | 79.6±6.6c | 359.7±3.9a | 80.3±4.3c | 266.7±9.5b |
表1 四种拮抗菌对解淀粉欧文氏菌的抑菌效价
Table 1 Bacteriostatic potency of four antagonistic bacteria against E. amylovora
拮抗菌 Antagonistic bacteria | JK1 | JK2 | JK3 | JK4 |
---|---|---|---|---|
抑菌圈直径Diameter of bacteriostatic ring/mm | 4.0±0.1c | 17.9±0.2a | 4.0±0.1c | 13.1±0.2b |
抑菌效价Antibacterial potency/(mm·mL-1) | 79.6±6.6c | 359.7±3.9a | 80.3±4.3c | 266.7±9.5b |
图3 菌株JK2的菌落和菌体形态特征 A:JK2在NA固体培养基上的菌体形态;B:菌体形态(体视镜10×);C-D:革兰氏染色(光学显微镜100×10);D:革兰氏染色放大
Fig. 3 Morphology and colony characteristics of strain JK2 A: Bacterial morphology of JK2 on NA solid medium. B: Bacteria morphology(stereoscope 10×). C-D: Gram staining(optical microscope 100×10). D: Gram staining amplification
测定内容Measured item | 菌株JK2 Strain JK2 |
---|---|
VP | - |
MR | + |
明胶液化Gelaune liquefaction | + |
淀粉水解Starch hydrolysis | + |
葡萄糖Glucose | + |
甘露醇Mannitol | + |
蔗糖Sucrose | + |
阿拉伯糖Arabinose | + |
丙二酸盐利用Propanedioic acid utilization | - |
西蒙氏柠檬酸盐利用Simmons citrate utilization | - |
溶菌酶 Lysozyme | - |
表2 JK2菌株生理生化特性
Table 2 Physiological and biochemical characteristics of strain JK2
测定内容Measured item | 菌株JK2 Strain JK2 |
---|---|
VP | - |
MR | + |
明胶液化Gelaune liquefaction | + |
淀粉水解Starch hydrolysis | + |
葡萄糖Glucose | + |
甘露醇Mannitol | + |
蔗糖Sucrose | + |
阿拉伯糖Arabinose | + |
丙二酸盐利用Propanedioic acid utilization | - |
西蒙氏柠檬酸盐利用Simmons citrate utilization | - |
溶菌酶 Lysozyme | - |
图6 不同发酵条件对菌株JK2的生长量影响 不同字母表示数值有显著差异(P<0.05)。下同
Fig. 6 Effects of different fermentation conditions on the growth of strain JK2 Different letters indicate values are significantly different(P<0.05). The same below
No. | A | B/% | C/℃ | D/(r·min-1) | OD600 | No. | A | B/% | C/℃ | D/(r·min-1) | OD600 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.5 | 1 | 30 | 200 | 2.018 | 16 | 6.5 | 5 | 32 | 200 | 3.789 | |
2 | 7.5 | 1 | 30 | 200 | 2.609 | 17 | 5.5 | 3 | 28 | 200 | 2.153 | |
3 | 5.5 | 5 | 30 | 200 | 2.336 | 18 | 7.5 | 3 | 28 | 200 | 2.619 | |
4 | 7.5 | 5 | 30 | 200 | 3.086 | 19 | 5.5 | 3 | 32 | 200 | 2.018 | |
5 | 6.5 | 3 | 28 | 180 | 2.585 | 20 | 7.5 | 3 | 32 | 200 | 2.846 | |
6 | 6.5 | 3 | 32 | 180 | 2.886 | 21 | 6.5 | 1 | 30 | 180 | 2.729 | |
7 | 6.5 | 3 | 28 | 220 | 2.706 | 22 | 6.5 | 5 | 30 | 180 | 3.112 | |
8 | 6.5 | 3 | 32 | 220 | 3.495 | 23 | 6.5 | 1 | 30 | 220 | 3.161 | |
9 | 5.5 | 3 | 30 | 180 | 1.735 | 24 | 6.5 | 5 | 30 | 220 | 3.629 | |
10 | 7.5 | 3 | 30 | 180 | 1.839 | 25 | 6.5 | 3 | 30 | 200 | 4.159 | |
11 | 5.5 | 3 | 30 | 220 | 2.552 | 26 | 6.5 | 3 | 30 | 200 | 3.861 | |
12 | 7.5 | 3 | 30 | 220 | 3.077 | 27 | 6.5 | 3 | 30 | 200 | 3.827 | |
13 | 6.5 | 1 | 28 | 200 | 2.683 | 28 | 6.5 | 3 | 30 | 200 | 3.692 | |
14 | 6.5 | 5 | 28 | 200 | 3.021 | 29 | 6.5 | 3 | 30 | 200 | 3.945 | |
15 | 6.5 | 1 | 32 | 200 | 3.229 |
表3 响应面法设计方案和结果
Table 3 Design scheme and results by response surface method
No. | A | B/% | C/℃ | D/(r·min-1) | OD600 | No. | A | B/% | C/℃ | D/(r·min-1) | OD600 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.5 | 1 | 30 | 200 | 2.018 | 16 | 6.5 | 5 | 32 | 200 | 3.789 | |
2 | 7.5 | 1 | 30 | 200 | 2.609 | 17 | 5.5 | 3 | 28 | 200 | 2.153 | |
3 | 5.5 | 5 | 30 | 200 | 2.336 | 18 | 7.5 | 3 | 28 | 200 | 2.619 | |
4 | 7.5 | 5 | 30 | 200 | 3.086 | 19 | 5.5 | 3 | 32 | 200 | 2.018 | |
5 | 6.5 | 3 | 28 | 180 | 2.585 | 20 | 7.5 | 3 | 32 | 200 | 2.846 | |
6 | 6.5 | 3 | 32 | 180 | 2.886 | 21 | 6.5 | 1 | 30 | 180 | 2.729 | |
7 | 6.5 | 3 | 28 | 220 | 2.706 | 22 | 6.5 | 5 | 30 | 180 | 3.112 | |
8 | 6.5 | 3 | 32 | 220 | 3.495 | 23 | 6.5 | 1 | 30 | 220 | 3.161 | |
9 | 5.5 | 3 | 30 | 180 | 1.735 | 24 | 6.5 | 5 | 30 | 220 | 3.629 | |
10 | 7.5 | 3 | 30 | 180 | 1.839 | 25 | 6.5 | 3 | 30 | 200 | 4.159 | |
11 | 5.5 | 3 | 30 | 220 | 2.552 | 26 | 6.5 | 3 | 30 | 200 | 3.861 | |
12 | 7.5 | 3 | 30 | 220 | 3.077 | 27 | 6.5 | 3 | 30 | 200 | 3.827 | |
13 | 6.5 | 1 | 28 | 200 | 2.683 | 28 | 6.5 | 3 | 30 | 200 | 3.692 | |
14 | 6.5 | 5 | 28 | 200 | 3.021 | 29 | 6.5 | 3 | 30 | 200 | 3.945 | |
15 | 6.5 | 1 | 32 | 200 | 3.229 |
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 11.74 | 14 | 0.838 6 | 17.20 | < 0.000 1 | ** |
A-pH | 0.887 8 | 1 | 0.887 8 | 18.21 | 0.000 8 | ** |
B-接种量Inoculation amount | 0.539 3 | 1 | 0.539 3 | 11.06 | 0.005 0 | ** |
C-温度Temperature | 0.519 2 | 1 | 0.519 2 | 10.65 | 0.005 7 | ** |
D-转速Rotational speed | 1.16 | 1 | 1.16 | 23.83 | 0.000 2 | ** |
AB | 0.006 3 | 1 | 0.006 3 | 0.129 6 | 0.724 2 | |
AC | 0.032 8 | 1 | 0.032 8 | 0.671 9 | 0.426 1 | |
AD | 0.044 3 | 1 | 0.044 3 | 0.908 7 | 0.356 6 | |
BC | 0.012 3 | 1 | 0.012 3 | 0.252 7 | 0.623 0 | |
BD | 0.001 8 | 1 | 0.001 8 | 0.037 0 | 0.850 1 | |
CD | 0.059 5 | 1 | 0.059 5 | 1.22 | 0.287 8 | |
A2 | 7.62 | 1 | 7.62 | 156.25 | < 0.000 1 | ** |
B2 | 0.471 2 | 1 | 0.471 2 | 9.66 | 0.007 7 | ** |
C2 | 1.26 | 1 | 1.26 | 25.87 | 0.000 2 | ** |
D2 | 1.66 | 1 | 1.66 | 34.13 | < 0.000 1 | ** |
残差Residual | 0.682 7 | 14 | 0.048 8 | |||
失拟检验Lack of fit | 0.563 5 | 10 | 0.056 3 | 1.89 | 0.282 3 | 无显著Not significant |
纯误差 Pure error | 0.119 2 | 4 | 0.029 8 | |||
合计 Total | 12.42 | 28 | ||||
R2=0.9450 R2(adj)=0.8901 Adeq Precision=13.0229 |
表4 回归方程方差分析
Table 4 Variance analysis of regression model
来源 Source | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F-value | P值 P-value | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 11.74 | 14 | 0.838 6 | 17.20 | < 0.000 1 | ** |
A-pH | 0.887 8 | 1 | 0.887 8 | 18.21 | 0.000 8 | ** |
B-接种量Inoculation amount | 0.539 3 | 1 | 0.539 3 | 11.06 | 0.005 0 | ** |
C-温度Temperature | 0.519 2 | 1 | 0.519 2 | 10.65 | 0.005 7 | ** |
D-转速Rotational speed | 1.16 | 1 | 1.16 | 23.83 | 0.000 2 | ** |
AB | 0.006 3 | 1 | 0.006 3 | 0.129 6 | 0.724 2 | |
AC | 0.032 8 | 1 | 0.032 8 | 0.671 9 | 0.426 1 | |
AD | 0.044 3 | 1 | 0.044 3 | 0.908 7 | 0.356 6 | |
BC | 0.012 3 | 1 | 0.012 3 | 0.252 7 | 0.623 0 | |
BD | 0.001 8 | 1 | 0.001 8 | 0.037 0 | 0.850 1 | |
CD | 0.059 5 | 1 | 0.059 5 | 1.22 | 0.287 8 | |
A2 | 7.62 | 1 | 7.62 | 156.25 | < 0.000 1 | ** |
B2 | 0.471 2 | 1 | 0.471 2 | 9.66 | 0.007 7 | ** |
C2 | 1.26 | 1 | 1.26 | 25.87 | 0.000 2 | ** |
D2 | 1.66 | 1 | 1.66 | 34.13 | < 0.000 1 | ** |
残差Residual | 0.682 7 | 14 | 0.048 8 | |||
失拟检验Lack of fit | 0.563 5 | 10 | 0.056 3 | 1.89 | 0.282 3 | 无显著Not significant |
纯误差 Pure error | 0.119 2 | 4 | 0.029 8 | |||
合计 Total | 12.42 | 28 | ||||
R2=0.9450 R2(adj)=0.8901 Adeq Precision=13.0229 |
处理 Treatment | 坏死斑直径Diameters of lesions/mm | 防效 Control effect/% | |
---|---|---|---|
阴性对照 Negative control | 2.0±0.13e | ||
阳性对照 Positive control | 16.71±1.35a | ||
B. velezensis JK2处理Treatments by B. velerensis JK2 | 处理对照Treatment control | 3.62±0.45d | |
保护性试验Protective treatment | 5.72±0.63c | 65.88±3.33a | |
治疗性试验Curative treatment | 9.37±0.91b | 44.33±5.70b | |
链霉素处理Treatments by streptomycin | 处理对照Treatment control | 3.32±0.73de | |
保护性试验Protective treatment | 6.28±0.52c | 62.89±3.33a | |
治疗性试验Curative treatment | 9.83±1.65b | 41.14±9.46b |
表5 菌株JK2对新疆野苹果果实感染梨火疫病的防治效果
Table 5 Control effect of strain JK2 on fire blight disease in fruits of M. sieversii
处理 Treatment | 坏死斑直径Diameters of lesions/mm | 防效 Control effect/% | |
---|---|---|---|
阴性对照 Negative control | 2.0±0.13e | ||
阳性对照 Positive control | 16.71±1.35a | ||
B. velezensis JK2处理Treatments by B. velerensis JK2 | 处理对照Treatment control | 3.62±0.45d | |
保护性试验Protective treatment | 5.72±0.63c | 65.88±3.33a | |
治疗性试验Curative treatment | 9.37±0.91b | 44.33±5.70b | |
链霉素处理Treatments by streptomycin | 处理对照Treatment control | 3.32±0.73de | |
保护性试验Protective treatment | 6.28±0.52c | 62.89±3.33a | |
治疗性试验Curative treatment | 9.83±1.65b | 41.14±9.46b |
图9 新疆野苹果果实对梨火疫病的抗菌活性试验 接种后15 d(dpi)后用B. velezensis JK2治疗的新疆野苹果幼果中的梨火疫病疾病指数;NC:阴性对照;PC:阳性对照;TrC:治疗对照;PTr:保护性疗效;CTr:治疗性疗效
Fig. 9 Antibacterial activity test on fire blight disease in the fruits of M. sieversii The fire blight disease index of M. sieversii fruits treated with B. velezensis strain JK2 after 15 d post-inoculation(dpi). NC: Negative control; PC: positive control; TrC: treatment control; PTr: protective treatment; CTr: curative treatment
[1] | 李晓妹, 韩丽丽, 何亚南, 等. 20个苹果品种(类型)对梨火疫病菌的抗病性评价[J]. 植物检疫, 2022, 36(4): 6-12. |
Li XM, Han LL, He YN, et al. Evaluation on the resistance of 20 apple varieties to Erwinia amylovora[J]. Plant Quar, 2022, 36(4): 6-12. | |
[2] | 刘凤权, 明亮, 赵延存, 等. 中国梨火疫病发生与防控进展[J]. 落叶果树, 2023, 55(6): 1-7. |
Liu FQ, Ming L, Zhao YC, et al. Progress in the occurrence and control of pear fire blight in China[J]. Deciduous Fruits, 2023, 55(6): 1-7. | |
[3] | 韩丽丽, 荆珺, 王杰花, 等. 杏树梨火疫病在中国首次发生[J]. 植物检疫, 2022, 36(6): 46-49. |
Han LL, Jing J, Wang JH, et al. First report of pear fire blight on apricot caused by Erwinia amylovora in China[J]. Plant Quar, 2022, 36(6): 46-49. | |
[4] | Zhao YQ, Tian YL, Wang LM, et al. Fire blight disease, a fast-approaching threat to apple and pear production in China[J]. J Integr Agric, 2019, 18(4): 815-820. |
[5] | Doolotkeldieva T, Bobushova S, Schuster C, et al. Isolation and genetic characterization of Erwinia amylovora bacteria from Kyrgyzstan[J]. Eur J Plant Pathol, 2019, 155(2): 677-686. |
[6] | 杨金花, 徐叶挺, 张校立. 梨火疫病研究进展[J]. 分子植物育种, 2022, 20(3): 1003-1013. |
Yang JH, Xu YT, Zhang XL. Advances of fire blight in pear[J]. Mol Plant Breed, 2022, 20(3): 1003-1013. | |
[7] | 段红雁, 李紫英, 王兰, 等. 5种蔷薇科果树对梨火疫病的抗性[J]. 中国果树, 2022(2): 65-67, 74. |
Duan HY, Li ZY, Wang L, et al. Resistance of 5 rosaceae fruit trees to pear fire blight[J]. China Fruits, 2022(2): 65-67, 74. | |
[8] | 刘朋飞, 王岩, 王泓力, 等. 6种杀菌剂对梨火疫病菌的室内毒力测定和混配试验[J]. 植物保护, 2022, 48(6): 98-104. |
Liu PF, Wang Y, Wang HL, et al. Laboratory toxicity tests and mixture experiments of six fungicides against pear fire blight[J]. Plant Prot, 2022, 48(6): 98-104. | |
[9] | 热孜亚·麦麦提, 盛强, 白雪莹, 等. 新疆梨火疫病菌对噻霉酮的敏感性及抗药性分析[J]. 果树学报, 2022, 39(9): 1669-1677. |
Reziya Maimaiti, Sheng Q, Bai XY, et al. Susceptibility of Erwinia amylovora to benziothiazolinone and its resistance risk analysis in Xinjiang[J]. J Fruit Sci, 2022, 39(9): 1669-1677. | |
[10] | Mikiciński A, Sobiczewski P, Puławska J, et al. Control of fire blight(Erwinia amylovora)by a novel strain 49M of Pseudomonas graminis from the phyllosphere of apple(Malus spp.)[J]. Eur J Plant Pathol, 2016, 145(2): 265-276. |
[11] | 方茜, 徐幼平, 蔡新忠. 果树火疫病研究进展[J]. 浙江大学学报: 农业与生命科学版, 2022, 48(6): 731-743. |
Fang X, Xu YP, Cai XZ. Research progress of fire blight in fruit trees[J]. J Zhejiang Univ Agric Life Sci, 2022, 48(6): 731-743. | |
[12] | 鲁晏宏, 郝金辉, 罗明, 等. 梨火疫病拮抗菌筛选及温室防效测定[J]. 微生物学通报, 2021, 48(10): 3690-3699. |
Lu YH, Hao JH, Luo M, et al. Screening of antagonistic bacteria against Erwinia amylovora and its control effect in greenhouse[J]. Microbiol China, 2021, 48(10): 3690-3699. | |
[13] | 徐琳赟, 古丽孜热·曼合木提, 韩剑, 等. 香梨内生拮抗细菌的筛选及对梨火疫病的生防潜力[J]. 西北植物学报, 2021, 41(1): 132-141. |
Xu LY, Gulizzier Manhemuti, Han J, et al. Screening of endophytic antagonistic bacteria from ‘kuerlexiangli’ pear and their biocontrol potential against fire blight disease[J]. Acta Bot Boreali-Occidentalia Sin, 2021, 41(1): 132-141. | |
[14] | 贺旭, 韩剑, 盛强, 等. 梨火疫病拮抗细菌FX1及其抑菌物质的防病作用[J]. 园艺学报, 2023, 50(5): 1118-1129. |
He X, Han J, Sheng Q, et al. Screening of antagonistic bacterium FX1 against Erwinia amylovora and its control effect of the antibacterial substances on fire blight[J]. Acta Hortic Sin, 2023, 50(5): 1118-1129. | |
[15] | Cui ZL, Hu LN, Zeng LL, et al. Isolation and characterization of Priestia megaterium KD7 for the biological control of pear fire blight[J]. Front Microbiol, 2023, 14: 1099664. |
[16] | 韦坤逢, 王丽, 李灿灿, 等. 辣椒根际链霉菌WKFF34的分离鉴定及拮抗作用[J]. 江西农业大学学报, 2018, 40(1): 78-88. |
Wei KF, Wang L, Li CC, et al. Identification of the Streptomyces Strain WKFF34 Isolated from the rhizosphere of chilli(Capsicum annuum)and its antagonistic activity[J]. Acta Agric Univ Jiangxiensis, 2018, 40(1): 78-88. | |
[17] | Krieg NR, Staley JT, Brown DR, et al. Bergey's manual® of systematic bacteriololgy[M]. USA: The Williams &Wilkins Co, 1986. |
[18] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of systematic identification of common bacterial Systems[M]. Beijing: Science Press, 2001. | |
[19] | 卢雨欣, 赵文娟, 白亚妮, 等. 耐盐碱番茄内生菌的筛选鉴定及功能研究[J]. 中国农学通报, 2023, 39(24): 50-58. |
Lu YX, Zhao WJ, Bai YN, et al. Saline-alkali tolerant endophytic bacteria in tomato: screening, identification and functional study[J]. Chin Agric Sci Bull, 2023, 39(24): 50-58. | |
[20] | Medhioub I, Cheffi M, Tounsi S, et al. Study of Bacillus velezensis OEE1 potentialities in the biocontrol against Erwinia amylovora, causal agent of fire blight disease of rosaceous plants[J]. Biol contr, 2022, 167: 104842. |
[21] | 陈志杰, 谢江辉, 陈宇丰, 等. 一株植物病原拮抗细菌的分离筛选及拮抗物质[J]. 生态学杂志, 2018, 37(5): 1595-1604. |
Chen ZJ, Xie JH, Chen YF, et al. Isolation and screening of a plant pathogen-antagonistic bacterium and antagonistic substance[J]. Chin J Ecol, 2018, 37(5): 1595-1604. | |
[22] | Ruiz-García C, Béjar V, Martínez-Checa F, et al. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain[J]. Int J Syst Evol Microbiol, 2005, 55(Pt1): 191-195. |
[23] | Fan B, Wang C, Song XF, et al. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol[J]. Front Microbiol, 2018, 9: 2491. |
[24] | 褚睿, 李昭轩, 张学青, 等. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
Chu R, Li ZX, Zhang XQ, et al. Screening and identification of antagonistic Bacillus spp. against cucumber fusarium wilt and its biocontrol effect[J]. Biotechnol Bull, 2023, 39(8): 262-271. | |
[25] | 谢海鹏, 林樱桃, 吴小燕, 等. 豇豆枯萎病生防细菌的筛选鉴定及抗病机理初探[J]. 热带作物学报, 2023, 44(6): 1224-1236. |
Xie HP, Lin YT, Wu XY, et al. Screening and identification of biocontrol bacteria of cowpea fusarium wilt and preliminary exploration of disease resistance mechanism[J]. Chin J Trop Crops, 2023, 44(6): 1224-1236. | |
[26] | 李万芹, 何鹏飞, 吴毅歆, 等. 香蕉内生贝莱斯芽孢杆菌YX-11的分离鉴定与功能研究[J]. 江西农业学报, 2021, 33(12): 8-13. |
Li WQ, He PF, Wu YX, et al. Isolation, identification and functional properties of endophytic Bacillus velezensis YX-11 from banana[J]. Acta Agric Jiangxi, 2021, 33(12): 8-13. | |
[27] | 何伟, 罗文芳, 周军辉, 等. 贝莱斯芽孢杆菌JTB8-2对加工番茄促生作用及其安全性评价[J]. 新疆农业科学, 2022, 59(5): 1260-1269. |
He W, Luo WF, Zhou YH, et al. Growth promoting effect and safety evaluation of Bacillus velezensis JTB8-2 on processed tomato[J]. Xinjiang Agric Sci, 2022, 59(5): 1260-1269. | |
[28] | 张德锋, 高艳侠, 王亚军, 等. 贝莱斯芽孢杆菌的分类、拮抗功能及其应用研究进展[J]. 微生物学通报, 2020, 47(11): 3634-3649. |
Zhang DF, Gao YX, Wang YJ, et al. Advances in taxonomy, antagonistic function and application of Bacillus velezensis[J]. Microbiol China, 2020, 47(11): 3634-3649. | |
[29] | 张梦君, 黎继烈, 申爱荣, 等. 亚麻立枯病拮抗菌的筛选、生防效果及发酵条件优化[J]. 微生物学通报, 2017, 44(5): 1099-1107. |
Zhang MJ, Li JL, Shen AR, et al. Screening, biocontrol effect and optimization of fermentation conditions of an antagonistic bacteria against Flax[J]. Microbiol China. 2017, 44(5): 1099-1107. | |
[30] | 吕天宇, 贺旭, 罗明, 等. 梨火疫病菌拮抗细菌FX1培养基及摇瓶发酵条件优化[J]. 中国生物防治学报, 2022, 38(6): 1553-1565. |
Lü TY, He X, Luo M, et al. Optimization of culture medium and flask fermentation conditions for Bacillus velezensis FX1 against Erwinia amylovora[J]. Chin J Biol Contr, 2022, 38(6): 1553-1565. | |
[31] | 马红珍, 闫敏, 李磊, 等. 基于响应面法优化贝莱斯芽孢杆菌C44发酵参数[J]. 山西农业科学, 2023, 51(9): 1088-1097. |
Ma HZ, Yan M, Li L, et al. Optimization of fermentation parameters of Bacillus velezensis C44 based on response surface methodology[J]. J Shanxi Agric Sci, 2023, 51(9): 1088-1097. | |
[32] | 兰成忠, 林雄, 甘林, 等. 贝莱斯芽孢杆菌FJ17-4发酵培养基和发酵条件优化[J]. 福建农业学报, 2022, 37(10): 1335-1343. |
Lan CZ, Lin X, Gan L, et al. Optimization of Bacillus velezensis FJ17-4 fermentation[J]. Fujian J Agric Sci, 2022, 37(10): 1335-1343. | |
[33] | 刘瑾, 张朝正, 赵华. 抗尖孢镰刀菌贝莱斯芽孢杆菌P9培养基及发酵条件优化[J]. 中国酿造, 2023, 42(2): 157-162. |
Liu J, Zhang CZ, Zhao H. Optimization of medium and fermentation conditions of Bacillus velezensis P9 resistant to Fusarium oxysporum[J]. China Brew, 2023, 42(2): 157-162. | |
[34] | 田凤鸣, 陈强, 何九军, 等. 一株花椒根腐病拮抗菌的筛选、发酵条件及其抑菌物质的初步分析[J]. 微生物学通报, 2023, 50(7): 2950-2969. |
Tian FM, Chen Q, He JJ, et al. A biocontrol bacterial strain against Zanthoxylum bungeanum root rot: screening, fermentation condition optimization, and preliminary identification of antimicrobial ingredients[J]. Microbiol China, 2023, 50(7): 2950-2969. | |
[35] | 闯国荣, 于玮玮, 杨美玲, 等. 新疆野苹果[M]. 北京: 中国林业出版社, 2020. |
Chuang GR, Yu WW, Yang ML, et al. The Malus sieversii in China[M]. Beijing: China Forestry Publishing House, 2020. | |
[36] | 曹雅芝, 陈卫民, 张胜军, 等. 83份新疆野苹果种质资源对梨火疫病菌的抗病性评价[J]. 植物检疫, 2024, 38(1): 33-46. |
Cao YZ, Chen WM, Zhang SJ, et al. Evaluation of disease resistance of 83 Malus sieversii germplasm resources to Erwinia amylovora[J]. Plant Quar, 2024, 38(1): 33-46. |
[1] | 王美玲, 耿丽丽, 房瑜, 束长龙, 张杰. 苏云金芽胞杆菌4BM1菌株对油菜菌核病的防治潜力[J]. 生物技术通报, 2024, 40(9): 260-269. |
[2] | 车建美, 赖恭梯, 李思雨, 郭奥琳, 陈冰星, 陈杏, 刘波, 赖呈纯. 复合微生物菌剂对葡萄生长、品质及根际土壤环境的影响[J]. 生物技术通报, 2024, 40(8): 264-274. |
[3] | 王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225. |
[4] | 范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. |
[5] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
[6] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
[7] | 叶柳健, 贺愉岚, 王小虎, 韦圣博, 何双, 朱绮霞, 卢洁, 周礼芹. 解淀粉芽孢杆菌YK3对沃柑溃疡病的防效及叶际细菌群落相关性的影响[J]. 生物技术通报, 2024, 40(11): 248-258. |
[8] | 李希, 边子俊, 宁周神, 刘红雨, 曾槟, 董伟. 离子型稀土矿根际芽孢杆菌的促生作用研究[J]. 生物技术通报, 2024, 40(11): 259-268. |
[9] | 王俊芳, 黄秋斌, 张飘丹, 张彭湃. Surfactin的结构、生物合成及其在生物防治中的作用[J]. 生物技术通报, 2024, 40(1): 100-112. |
[10] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[11] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[12] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[13] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[14] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[15] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||