生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 99-108.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0797
张超(), 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀()
收稿日期:
2023-08-16
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
于恒秀,博士,教授,研究方向:水稻遗传育种;E-mail: hxyu@yzu.edu.cn作者简介:
张超,博士,讲师,研究方向:水稻功能基因组学;E-mail: chaozhang@yzu.edu.cn
基金资助:
ZHANG Chao(), WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu()
Received:
2023-08-16
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】维生素B1(vitamin B1, VB1)是生物所必需的微量元素,其作为多个酶的辅因子,参与重要的细胞代谢途径,而水稻中维生素B1合成途径还有待深入研究。本研究旨在解析水稻维生素B1合成相关基因OsTHIC的生物学功能。【方法】综合运用诱变技术、色素测定、Mutmap+、基因编辑及非靶向代谢组分析等手段克隆目的基因并解析其功能。【结果】从EMS诱变的水稻突变体库中发现一个心叶白化致死突变体wll1(white leaf and lethal 1)。wll1从四叶期开始出现心叶白化表型,白化表型逐渐扩展到其他叶片并导致幼苗死亡。与野生型相比,wll1的叶绿素含量与类胡萝卜素含量显著降低。利用Mutmap+及基因编辑技术,确定目的基因为维生素B1合成相关基因OsTHIC。OsTHIC在叶片具有较高表达量,OsTHIC蛋白定位于叶绿体。wll1及OsTHIC的敲除突变体中维生素B1含量均显著低于野生型,外施维生素B1可以恢复wll1的突变表型。外施维生素B1及OsTHIC突变均会影响维生素B1合成相关基因的表达。非靶向代谢组测序分析表明,野生型与wll1差异代谢物在氨基酸的生物合成、辅因子的生物合成、ABC转运器及氨酰基-tRNA的生物合成等方面显著富集。【结论】OsTHIC通过调控维生素 B1 含量,参与氨基酸合成等代谢过程,在水稻生长发育过程中发挥重要作用。
张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108.
ZHANG Chao, WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu. Functional Study of Vitamin B1 Synthesis-related Gene OsTHIC in Rice[J]. Biotechnology Bulletin, 2024, 40(2): 99-108.
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
---|---|---|
OsTHIC-RT | AAGATGTGCAGGACAGGAGC | ACATGGCCAGATTCCTCGTG |
OsTH1-RT | CGCCGTCGAGGACCTCAT | GACTGCGTGTCGTGGTTCATC |
OsTHI1-RT | TACGACGAGCAGGAGGACTAC | CGTTGAACAGCTTCACGTTGG |
OsPALE1-RT | GCCAATACATCGCCCAGG | CGACGATGGTGGCCTTGT |
TPK1-RT | AGGTCCGCATGAGGTACAAG | TCAACTATTTCGGCACCCAG |
TPK2-RT | GCCCCGCCTGTGGACTCA | CGGGTGCTTTCATAGTCTGGA |
TPK3-RT | TCAGGACACCACCGATTTAC | CATCTCGTGGTCAAACCTTC |
Ubiquitin | CAAGATGATCTGCCGCAAATGC | TTAACCAGTCCATGAACCCG |
表1 RT-qPCR所用引物序列
Table 1 Sequences of primers used in RT-qPCR
Primer name | Forward primer sequence(5'-3') | Reverse primer sequence(5'-3') |
---|---|---|
OsTHIC-RT | AAGATGTGCAGGACAGGAGC | ACATGGCCAGATTCCTCGTG |
OsTH1-RT | CGCCGTCGAGGACCTCAT | GACTGCGTGTCGTGGTTCATC |
OsTHI1-RT | TACGACGAGCAGGAGGACTAC | CGTTGAACAGCTTCACGTTGG |
OsPALE1-RT | GCCAATACATCGCCCAGG | CGACGATGGTGGCCTTGT |
TPK1-RT | AGGTCCGCATGAGGTACAAG | TCAACTATTTCGGCACCCAG |
TPK2-RT | GCCCCGCCTGTGGACTCA | CGGGTGCTTTCATAGTCTGGA |
TPK3-RT | TCAGGACACCACCGATTTAC | CATCTCGTGGTCAAACCTTC |
Ubiquitin | CAAGATGATCTGCCGCAAATGC | TTAACCAGTCCATGAACCCG |
图1 wll1表型及光合色素测定 A: 野生型与wll1在一叶期、二叶期和三叶期的表型。标尺:1 cm。B: 野生型与wll1四叶期表型。箭头指示叶片白化位置。标尺:1 cm;C: 野生型与wll1四叶期第三叶光合色素测定。D: 野生型与wll1四叶期第四叶光合色素测定。n.s. 表示无显著性差异。**表示显著性差异(P <0.01),下同
Fig. 1 Phenotypic characterization and photosynthesis pigment measurement of wll1 A: Phenotypes of of the seedlings at one-, two-, and three-leaf stage of wild type and wll1. Bar=1 cm. B: Phenotypes of the seedlings at four-leaf stage of wild type and wll1. Arrows indicate white leaves. Bar=1 cm. C: Photosynthesis pigment content of the third leaves of wild type and wll1 at four-leaf stage. D: Photosynthesis pigment measurement of the fourth leaves of wild type and wll1 at four-leaf stage. n.s. indicates no significant differencest. Asterisks indicate significant differences(**P <0.01), the same below
Position | Mutation type | IndexWT | IndexMutant | Annotation |
---|---|---|---|---|
Chr3-24858822 | G to A | 0.29 | 1 | LOC_Os03g44240 Intron |
Chr3-25176848 | G to A | 0.41 | 1 | Intergenic region |
Chr3-26049430 | G to A | 0.11 | 1 | Intergenic region |
Chr3-26101874 | G to A | 0.15 | 1 | Intergenic region |
Chr3-26268328 | G to A | 0.37 | 1 | Intergenic region |
Chr3-26295456 | G to A | 0.39 | 1 | LOC_Os03g46480 Intron |
Chr3-26372631 | G to A | 0.36 | 1 | LOC_Os03g46590 Exon |
Chr3-26862420 | T to C | 0.22 | 1 | Intergenic region |
Chr3-26955051 | G to A | 0.25 | 1 | LOC_Os03g47610 Exon |
Chr3-27059507 | G to A | 0.36 | 1 | LOC_Os03g47740 Exon |
Chr3-27128816 | G to A | 0.32 | 1 | LOC_Os03g47790 Intron |
Chr3-27371505 | G to A | 0.35 | 1 | Intergenic region |
Chr3-27377064 | G to A | 0.31 | 1 | LOC_Os03g48140 Exon |
Chr3-27379000 | G to A | 0.29 | 1 | LOC_Os03g48140 Intron |
Chr3-27418905 | G to A | 0.35 | 1 | LOC_Os03g48180 Promoter |
表2 候选突变位点
Table 2 Candidate mutation sites in wll1
Position | Mutation type | IndexWT | IndexMutant | Annotation |
---|---|---|---|---|
Chr3-24858822 | G to A | 0.29 | 1 | LOC_Os03g44240 Intron |
Chr3-25176848 | G to A | 0.41 | 1 | Intergenic region |
Chr3-26049430 | G to A | 0.11 | 1 | Intergenic region |
Chr3-26101874 | G to A | 0.15 | 1 | Intergenic region |
Chr3-26268328 | G to A | 0.37 | 1 | Intergenic region |
Chr3-26295456 | G to A | 0.39 | 1 | LOC_Os03g46480 Intron |
Chr3-26372631 | G to A | 0.36 | 1 | LOC_Os03g46590 Exon |
Chr3-26862420 | T to C | 0.22 | 1 | Intergenic region |
Chr3-26955051 | G to A | 0.25 | 1 | LOC_Os03g47610 Exon |
Chr3-27059507 | G to A | 0.36 | 1 | LOC_Os03g47740 Exon |
Chr3-27128816 | G to A | 0.32 | 1 | LOC_Os03g47790 Intron |
Chr3-27371505 | G to A | 0.35 | 1 | Intergenic region |
Chr3-27377064 | G to A | 0.31 | 1 | LOC_Os03g48140 Exon |
Chr3-27379000 | G to A | 0.29 | 1 | LOC_Os03g48140 Intron |
Chr3-27418905 | G to A | 0.35 | 1 | LOC_Os03g48180 Promoter |
图2 敲除OsTHIC基因产生类wll1表型 A: OsTHIC基因结构。三角形指示wll1中的突变位置,核苷酸及氨基酸变化标于下方。基因编辑靶序列位置以箭头指示,蓝色线表示“核糖开关”序列;B: CRISPR/Cas9基因编辑靶序列及敲除突变体OsTHIC-Cr中靶位点序列。插入的核苷酸标为红色;C:OsTHIC-Cr表型,标尺:5 cm
Fig. 2 wll1-like phenotype by knocking out OsTHIC A: Gene structure of OsTHIC. The triangle indicates the position of mutation in wll1. Nucleotide and amino acid modification in wll1 are listed below. The position of target sequence for gene editing is marked with arrow. Blue line indicates the position of riboswitch. B: Target sequence for CRISPR/Cas9 gene editing and genotype of knock-out mutants of OsTHIC(OsTHIC-Cr). Inserted nucleotide is shown in red. C:Phenotype of OsTHIC-Cr. Bar=5 cm
图3 OsTHIC表达模式及OsTHIC亚细胞定位模式 A: OsTHIC在水稻不同组织的相对表达量。Seed 1:授粉后2 d的种子;Seed 2:授粉后7 d的种子;Seed 3:授粉后25 d的种子;不同字母表示具有显著性差异(P≤0.01);B: OsTHIC的亚细胞定位模式。红色信号为叶绿体自发荧光
Fig. 3 Expression pattern of OsTHIC and subcellular localization of OsTHIC A: Relative expressions of OsTHIC in different tissues. Seed 1: Seeds 2 DAF(days after pollination). Seed 2: Seeds 7 DAF. Seed 3: Seeds 25 DAF. Different letters indicate significant difference. B: Subcellular localization of OsTHIC in rice protoplasts. Chloroplast auto-fluorescence is in red
图4 OsTHIC突变体维生素B1含量及外施维生素B1表型 A: 野生型、wll1及OsTHIC-Cr第四叶中维生素B1含量。B:wll1外施维生素B1后表型。标尺:5 cm
Fig. 4 Vitamin B1 content and phenotype after exogenous vitamin B1 treatment of OsTHIC mutant A: Vitamin B1 content in the fourth leaf of wild type, wll1, and OsTHIC-Cr. B: Phenotype of wll1 plant sprayed with exogenous vitamin B1. Bar=5 cm
图5 OsTHIC突变及外施维生素B1对维生素B1合成相关基因表达量影响 A:野生型及wll1维生素B1合成相关基因表达量比较;B:外施维生素B1植株与对照植株维生素B1合成相关基因表达量比较
Fig. 5 Influences on expressions of vitamin B1 biosynthesis genes by mutation of OsTHIC and exogenous vitamin B1 treatment A: Comparison of expression level of vitamin B1 biosynthesis genes between wild type and wll1. B: Comparison of expression level of vitamin B1 biosynthesis genes between plants treated with vitamin B1 and control plants
图6 野生型与wll1非靶向代谢组分析 A: 代谢物主成分分析图;B:野生型与wll1差异代谢物火山图;C:差异代谢物 KEGG 通路富集分析
Fig. 6 Analysis of untargeted metabolomics of wild type and wll1 A: PCA of metabolite between wild type and wll1. B: Volcano map of differential metabolite between wild type and wll1. C: Enrichment analysis of differential metabolite KEGG pathway
[1] |
Sambon M, Wins P, Bettendorff L. Neuroprotective effects of thiamine and precursors with higher bioavailability: focus on benfotiamine and dibenzoylthiamine[J]. Int J Mol Sci, 2021, 22(11): 5418.
doi: 10.3390/ijms22115418 URL |
[2] |
Fardet A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre?[J]. Nutr Res Rev, 2010, 23(1): 65-134.
doi: 10.1017/S0954422410000041 pmid: 20565994 |
[3] |
Huang HM, Chen HL, Gibson GE. Thiamine and oxidants interact to modify cellular calcium stores[J]. Neurochem Res, 2010, 35(12): 2107-2116.
doi: 10.1007/s11064-010-0242-z URL |
[4] |
Nosaka K. Recent progress in understanding thiamin biosynthesis and its genetic regulation in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2006, 72(1): 30-40.
doi: 10.1007/s00253-006-0464-9 URL |
[5] |
Whitfield KC, Smith TJ, Rohner F, et al. Thiamine fortification strategies in low- and middle-income settings: a review[J]. Ann N Y Acad Sci, 2021, 1498(1): 29-45.
doi: 10.1111/nyas.v1498.1 URL |
[6] |
Lonsdale D. A review of the biochemistry, metabolism and clinical benefits of thiamin(e)and its derivatives[J]. Evid Based Complement Alternat Med, 2006, 3(1): 49-59.
doi: 10.1093/ecam/nek009 URL |
[7] |
Dong W, Stockwell VO, Goyer A. Enhancement of thiamin content in Arabidopsis thaliana by metabolic engineering[J]. Plant Cell Physiol, 2015, 56(12): 2285-2296.
doi: 10.1093/pcp/pcv148 pmid: 26454882 |
[8] |
Goyer A. Thiamine in plants: aspects of its metabolism and functions[J]. Phytochemistry, 2010, 71: 1615-1624.
doi: 10.1016/j.phytochem.2010.06.022 pmid: 20655074 |
[9] |
Woodward JB, Abeydeera ND, Paul D, et al. A maize thiamine auxotroph is defective in shoot meristem maintenance[J]. Plant Cell, 2010, 22(10): 3305-3317.
doi: 10.1105/tpc.110.077776 URL |
[10] |
Boubakri H, Gargouri M, Mliki A, et al. Vitamins for enhancing plant resistance[J]. Planta, 2016, 244(3): 529-543.
doi: 10.1007/s00425-016-2552-0 pmid: 27315123 |
[11] |
Ahn IP, Kim S, Lee YH, et al. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis[J]. Plant Physiol, 2007, 143(2): 838-848.
doi: 10.1104/pp.106.092627 URL |
[12] |
Ahn IP, Kim S, Lee YH. Vitamin B1 functions as an activator of plant disease resistance[J]. Plant Physiol, 2005, 138(3): 1505-1515.
doi: 10.1104/pp.104.058693 URL |
[13] |
Rapala-Kozik M, Kowalska E, Ostrowska K. Modulation of thiamine metabolism in Zea mays seedlings under conditions of abiotic stress[J]. J Exp Bot, 2008, 59(15): 4133-4143.
doi: 10.1093/jxb/ern253 pmid: 18940932 |
[14] |
Tunc-Ozdemir M, Miller G, Song LH, et al. Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis[J]. Plant Physiol, 2009, 151(1): 421-432.
doi: 10.1104/pp.109.140046 pmid: 19641031 |
[15] |
Rapala-Kozik M, Wolak N, Kujda M, et al. The upregulation of thiamine(vitamin B1)biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response[J]. BMC Plant Biol, 2012, 12: 2.
doi: 10.1186/1471-2229-12-2 pmid: 22214485 |
[16] |
Sayed SA, Gadallah MAA. Effects of shoot and root application of thiamin on salt-stressed sunflower plants[J]. Plant Growth Regul, 2002, 36(1): 71-80.
doi: 10.1023/A:1014784831387 URL |
[17] |
Guan JC, Hasnain G, Garrett TJ, et al. Divisions of labor in the thiamin biosynthetic pathway among organs of maize[J]. Front Plant Sci, 2014, 5: 370.
doi: 10.3389/fpls.2014.00370 URL |
[18] |
Mimura M, Zallot R, Niehaus TD, et al. Arabidopsis TH2 encodes the orphan enzyme thiamin monophosphate phosphatase[J]. Plant Cell, 2016, 28(10): 2683-2696.
doi: 10.1105/tpc.16.00600 URL |
[19] |
Jurgenson CT, Begley TP, Ealick SE. The structural and biochemical foundations of thiamin biosynthesis[J]. Annu Rev Biochem, 2009, 78: 569-603.
doi: 10.1146/annurev.biochem.78.072407.102340 pmid: 19348578 |
[20] |
Hsieh WY, Liao JC, Wang HT, et al. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B1 biosynthesis pathway[J]. Plant J, 2017, 91(1): 145-157.
doi: 10.1111/tpj.2017.91.issue-1 URL |
[21] |
Ajjawi I, Rodriguez Milla MA, Cushman J, et al. Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis[J]. Plant Mol Biol, 2007, 65(1-2): 151-162.
pmid: 17611796 |
[22] |
Martinis J, Gas-Pascual E, Szydlowski N, et al. Long-distance transport of thiamine(vitamin B1)is concomitant with that of polyamines[J]. Plant Physiol, 2016, 171(1): 542-553.
doi: 10.1104/pp.16.00009 pmid: 27006489 |
[23] |
Raschke M, Bürkle L, Müller N, et al. Vitamin B1 biosynthesis in plants requires the essential iron sulfur cluster protein, THIC[J]. Proc Natl Acad Sci USA, 2007, 104(49): 19637-19642.
doi: 10.1073/pnas.0709597104 pmid: 18048325 |
[24] |
Kong DY, Zhu YX, Wu HL, et al. AtTHIC, a gene involved in thiamine biosynthesis in Arabidopsis thaliana[J]. Cell Res, 2008, 18(5): 566-576.
doi: 10.1038/cr.2008.35 |
[25] |
Kong WY, Yu XW, Chen HY, et al. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice[J]. Plant Mol Biol, 2016, 92(1-2): 177-191.
doi: 10.1007/s11103-016-0513-4 pmid: 27514852 |
[26] |
Fekih R, Takagi H, Tamiru M, et al. MutMap+: genetic mapping and mutant identification without crossing in rice[J]. PLoS One, 2013, 8(7): e68529.
doi: 10.1371/journal.pone.0068529 URL |
[27] |
Lai ZJ, Tsugawa H, Wohlgemuth G, et al. Identifying metabolites by integrating metabolome databases with mass spectrometry cheminformatics[J]. Nat Methods, 2018, 15(1): 53-56.
doi: 10.1038/nmeth.4512 pmid: 29176591 |
[28] |
Strobbe S, Verstraete J, Stove C, et al. Metabolic engineering of rice endosperm towards higher vitamin B1 accumulation[J]. Plant Biotechnol J, 2021, 19(6): 1253-1267.
doi: 10.1111/pbi.13545 pmid: 33448624 |
[29] |
Dong W, Thomas N, Ronald PC, et al. Overexpression of thiamin biosynthesis genes in rice increases leaf and unpolished grain thiamin content but not resistance to Xanthomonas oryzae pv. oryzae[J]. Front Plant Sci, 2016, 7: 616.
doi: 10.3389/fpls.2016.00616 pmid: 27242822 |
[30] |
Strobbe S, Van Der Straeten D. Toward eradication of B-vitamin deficiencies: considerations for crop biofortification[J]. Front Plant Sci, 2018, 9: 443.
doi: 10.3389/fpls.2018.00443 pmid: 29681913 |
[31] |
Win AZ. Micronutrient deficiencies in early childhood can lower a country's GDP: the Myanmar example[J]. Nutrition, 2016, 32(1): 138-140.
doi: 10.1016/j.nut.2015.06.011 pmid: 26421387 |
[32] |
Nie YS, Yu L, Mao LL, et al. Vitamin B1 THIAMIN REQUIRING1 synthase mediates the maintenance of chloroplast function by regulating sugar and fatty acid metabolism in rice[J]. J Integr Plant Biol, 2022, 64(8): 1575-1595.
doi: 10.1111/jipb.v64.8 URL |
[33] |
Bocobza SE, Malitsky S, Araújo WL, et al. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis[J]. Plant Cell, 2013, 25(1): 288-307.
doi: 10.1105/tpc.112.106385 URL |
[34] |
Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression[J]. Nature, 2002, 419(6910): 952-956.
doi: 10.1038/nature01145 URL |
[35] |
Mironov AS, Gusarov I, Rafikov R, et al. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria[J]. Cell, 2002, 111(5): 747-756.
pmid: 12464185 |
[36] |
Sudarsan N, Barrick JE, Breaker RR. Metabolite-binding RNA domains are present in the genes of eukaryotes[J]. RNA, 2003, 9(6): 644-647.
pmid: 12756322 |
[37] |
Thore S, Leibundgut M, Ban N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand[J]. Science, 2006, 312(5777): 1208-1211.
pmid: 16675665 |
[1] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[2] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[3] | 林鑫焱, 张传忠, 戴兵, 王馨珩, 刘剑锋, 温丽, 徐兴健, 方军. 水稻穗发芽遗传与分子机制的研究进展[J]. 生物技术通报, 2024, 40(1): 24-31. |
[4] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[5] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[6] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[7] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[8] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[9] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[10] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[11] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[12] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[13] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[14] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[15] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||