生物技术通报 ›› 2024, Vol. 40 ›› Issue (2): 109-119.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0770
收稿日期:
2023-08-09
出版日期:
2024-02-26
发布日期:
2024-03-13
通讯作者:
黄磊,男,博士,教授,硕士生导师,研究方向 :应用微生物;E-mail: huanglei@tjut.edu.cn作者简介:
李雪,女,硕士研究生,研究方向:植物促生菌;E-mail: huaxuehuagong12@126.com
基金资助:
LI Xue(), LI Rong-ou, KONG Mei-yi, HUANG Lei()
Received:
2023-08-09
Published:
2024-02-26
Online:
2024-03-13
摘要:
【目的】对实验室分离筛选得到的一株解淀粉芽孢杆菌SQ-2进行促生特性研究,确定该菌株对水稻促生的浓度范围与作用机制,并分析接种菌株前后的土壤菌群结构。【方法】利用钼蓝比色法与固氮酶试剂盒对菌株SQ-2的溶磷能力及固氮酶活性进行检测。将102、104、106、108和3×108 CFU/mL的菌悬液接种至水培与土培水稻中,分别培养14 d和20 d后测定其水培、土培水稻的根茎干鲜重、茎长与茎粗。采用苯酚-次氯酸钠比色法、茚三酮检测法与3,5-二硝基水杨酸比色法测定土培水稻土壤中脲酶、蛋白酶与蔗糖酶的活性。利用pH计电位法检测土壤pH值,用对应试剂盒检测土壤速效氮磷钾含量及酸性磷酸酶活性,并对接种3×108 CFU/mL组的土培水稻土壤进行根际细菌群落结构分析。【结果】菌株SQ-2对磷酸三钙的溶解量为229.63 mg/L,固氮酶活性为55.07 U/L。与对照相比,接种菌悬液浓度在104 CFU/mL时,水培水稻根的干、鲜重增长最为显著;在接种浓度为3×108 CFU/mL时,土培水稻根茎的干、鲜重增长最为显著。随着接种菌悬液浓度的升高,上述土壤酶活性与速效氮磷钾浓度都有着不同程度的增加,而接种菌株3×108 CFU/mL的土壤pH值则由原来的7.83降至7.26。接种菌株SQ-2改变了水稻根际土壤中的菌落构成,显著提高了土壤α多样性的Ace、Chao、Sobs与Shannon指数。【结论】解淀粉芽孢杆菌 SQ-2对土培、水培水稻均有不同程度的促生效果。在土培实验中,能够通过提高土壤酶活性、速效氮磷钾水平及改变土壤菌群结构来起到促生作用,为细菌菌肥的研发提供了新的菌株资源。
李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119.
LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice[J]. Biotechnology Bulletin, 2024, 40(2): 109-119.
图1 解淀粉芽孢杆菌SQ-2在无机磷培养基中的溶磷作用 A:菌株SQ-2在无机磷固体培养基中的溶磷圈;B:菌株SQ-2在无机磷液体培养基中的溶磷量、pH与菌体数量(1×107)的变化
Fig. 1 Phosphorus dissolution of Bacillus amyloliquefaciens SQ-2 in inorganic phosphorus medium A: Phosphate solubilization zones of B. amyloliquefaciens SQ-2 on inorganic phosphorus solid medium; B: phosphorus dissolution amount, pH and bacterial growth ability(1×107)of B. amyloliquefaciens SQ-2 in inorganic phosphorus liquid medium
图2 接种解淀粉芽孢杆菌SQ-2后钾长石的扫描电子显微照片 A:钾长石对照组(2 μm);B:接种菌株SQ-2后钾长石的形态(2 μm);C:钾长石对照组(1 μm);D:接种菌株SQ-2后钾长石的形态(1 μm)
Fig. 2 Scanning electron micrograph of potassium feldspar after inoculation with B. amyloliquefaciens SQ-2 A: Potassium feldspar control group(2 μm). B: Morphology of potassium feldspar after inoculation with B. amyloliquefaciens SQ-2(2 μm). C: Potassium feldspar control group(1 μm). D: Morphology of potassium feldspar after inoculation with B. amyloliquefaciens SQ-2(1 μm)
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.03±0.001c | 0.03±0.001c | 0.32±0.014b | 0.34±0.012ab | 0.53±0.020ab | 4.92±0.060ab |
S1 | 0.03±0.003c | 0.03±0.002bc | 0.32±0.002b | 0.28±0.010b | 0.59±0.020ab | 5.28±0.177ab |
S2 | 0.05±0.003a | 0.04±0.003a | 0.52±0.005a | 0.40±0.026a | 0.62±0.007a | 5.63±0.003a |
S3 | 0.04±0.002ab | 0.04±0.001ab | 0.42±0.033ab | 0.34±0.019ab | 0.60±0.007ab | 5.71±0.253a |
S4 | 0.04±0.003ab | 0.04±0.001abc | 0.42±0.007ab | 0.36±0.017ab | 0.50±0.033b | 5.58±0.167a |
S5 | 0.04±0.002bc | 0.03±0.001c | 0.40±0.024b | 0.27±0.004b | 0.52±0.010b | 4.54±0.180b |
表1 不同浓度的解淀粉芽孢杆菌SQ-2对水培水稻根茎干鲜重、茎长与茎粗的影响
Table 1 Effects of B. amyloliquefaciens SQ-2 at different inoculum concentrations on the dry and fresh weight, stem length, and stem diameter of hydroponic rice
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.03±0.001c | 0.03±0.001c | 0.32±0.014b | 0.34±0.012ab | 0.53±0.020ab | 4.92±0.060ab |
S1 | 0.03±0.003c | 0.03±0.002bc | 0.32±0.002b | 0.28±0.010b | 0.59±0.020ab | 5.28±0.177ab |
S2 | 0.05±0.003a | 0.04±0.003a | 0.52±0.005a | 0.40±0.026a | 0.62±0.007a | 5.63±0.003a |
S3 | 0.04±0.002ab | 0.04±0.001ab | 0.42±0.033ab | 0.34±0.019ab | 0.60±0.007ab | 5.71±0.253a |
S4 | 0.04±0.003ab | 0.04±0.001abc | 0.42±0.007ab | 0.36±0.017ab | 0.50±0.033b | 5.58±0.167a |
S5 | 0.04±0.002bc | 0.03±0.001c | 0.40±0.024b | 0.27±0.004b | 0.52±0.010b | 4.54±0.180b |
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.07±0.001bc | 0.03±0.001b | 0.81±0.038bc | 0.43±0.004c | 0.72±0.023bc | 10.99±0.243c |
S1 | 0.06±0.001c | 0.03±0.001b | 0.74±0.031c | 0.42±0.006c | 0.64±0.003c | 11.85±0.180c |
S2 | 0.08±0.002abc | 0.03±0.001b | 0.94±0.022abc | 0.42±0.005c | 0.72±0.043bc | 11.34±0.013c |
S3 | 0.09±0.002ab | 0.03±0.001b | 0.99±0.017ab | 0.46±0.001bc | 0.77±0.037abc | 10.67±0.067c |
S4 | 0.10±0.001a | 0.04±0.002b | 1.11±0.001a | 0.51±0.037ab | 0.87±0.107ab | 12.32±0.377c |
S5 | 0.10±0.005a | 0.05±0.001a | 1.16±0.009a | 0.58±0.003a | 0.94±0.001a | 12.24±0.493c |
表2 不同浓度的解淀粉芽孢杆菌SQ-2对土培水稻根茎干鲜重、茎长与茎粗的影响
Table 2 Effects of B. amyloliquefaciens SQ-2 at different inoculum concentrations on the dry and fresh weight, stem length, and stem thickness of soil cultured rice
处理 Treatment | 根干重 Dry weight of root/g | 茎干重 Dry weight of stem/g | 根鲜重 Fresh weight of root/g | 茎鲜重 Fresh weight of stem/g | 茎粗 Stem thickness/mm | 株高 Height/cm |
---|---|---|---|---|---|---|
CK | 0.07±0.001bc | 0.03±0.001b | 0.81±0.038bc | 0.43±0.004c | 0.72±0.023bc | 10.99±0.243c |
S1 | 0.06±0.001c | 0.03±0.001b | 0.74±0.031c | 0.42±0.006c | 0.64±0.003c | 11.85±0.180c |
S2 | 0.08±0.002abc | 0.03±0.001b | 0.94±0.022abc | 0.42±0.005c | 0.72±0.043bc | 11.34±0.013c |
S3 | 0.09±0.002ab | 0.03±0.001b | 0.99±0.017ab | 0.46±0.001bc | 0.77±0.037abc | 10.67±0.067c |
S4 | 0.10±0.001a | 0.04±0.002b | 1.11±0.001a | 0.51±0.037ab | 0.87±0.107ab | 12.32±0.377c |
S5 | 0.10±0.005a | 0.05±0.001a | 1.16±0.009a | 0.58±0.003a | 0.94±0.001a | 12.24±0.493c |
图3 解淀粉芽孢杆菌SQ-2在不同浓度下对土培水稻生长的影响 A-F分别添加不同浓度菌液;A:3×108;B:108; C:106;D:104;E:102;F:0(CFU/mL)
Fig. 3 Effects of B. amyloliquefaciens SQ-2 on soil cultured rice under different bacterial inoculum concentrations A-F indicates adding different concentration of bacteria; A: 3×108; B: 108; C: 106; D: 104; E: 102; F: 0(CFU/mL)
图4 解淀粉芽孢杆菌SQ-2在不同浓度下对土壤中速效氮磷钾、pH与酶活性的影响 不同小写字母表示显著差异(P<0.05)
Fig. 4 Effects of B. amyloliquefaciens SQ-2 at different concentrations on nitrogen, phosphorus, potassium, pH and enzyme activity in soil The different lowercase letters indicate significant differences (P < 0.05)
图5 接种解淀粉芽孢杆菌SQ-2后土壤营养成分、土壤酶活性与pH的相关性
Fig. 5 Correlation between soil nutrient composition, soil enzyme activity, and pH after inoculation with B. amyloliquefaciens SQ-2(n=18) *P<0.05; ** P<0.01; *** P<0.001
图6 解淀粉芽孢杆菌SQ-2的香农稀释曲线与Venn图 A:Alpha多样性指数香农稀释曲线;B:接种解淀粉芽孢杆菌SQ-2与对照组的根际土菌群Venn图。CK为对照组,S5为3×108 CFU/mL组,下同
Fig. 6 Shannon dilution curve and Venn plot of B. amylo-liquefaciens SQ-2 A: Alpha diversity index Shannon dilution curve. B: Venn plot of rhizosphere soil microbiota of inoculated Bacillus amyloliquefaciens SQ-2 and control group. CK as the control group, S5 at 3×108 CFU/mL concentration. The same below
图8 水稻根际土壤细菌群落组成分析 A:水稻根际土壤细菌门分类水平;B:水稻根际土壤细菌纲分类水平
Fig. 8 Analysis of bacterial community composition in rice rhizosphere soil A: Phylum classification of bacteria in rice rhizosphere soil. B: Class classification of bacteria in rice rhizosphere soil
[1] |
刘广超, 叶青, 车永梅, 等. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1511 |
Liu GC, Ye Q, Che YM, et al. Screening and identification of high-efficiency phosphate solubilizing bacteria in tobacco rhizosphere and its growth-promoting effects[J]. Biotechnol Bull, 2022, 38(8): 179-187. | |
[2] |
George TS, Hinsinger P, Turner BL. Phosphorus in soils and plants - facing phosphorus scarcity[J]. Plant Soil, 2016, 401(1/2): 1-6.
doi: 10.1007/s11104-016-2846-9 URL |
[3] |
Park JH, Bolan N, Megharaj M, et al. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil[J]. J Hazard Mater, 2011, 185(2/3): 829-836.
doi: 10.1016/j.jhazmat.2010.09.095 URL |
[4] | 黄国勤, 王兴祥, 钱海燕, 等. 施用化肥对农业生态环境的负面影响及对策[J]. 生态环境, 2004, 13(4): 656-660. |
Huang GQ, Wang XX, Qian HY, et al. Negative impact of inorganic fertilizes application on agricultural environment and its countermeasures[J]. Ecol Environ Sci, 2004, 13(4): 656-660. | |
[5] |
Mahiwal S, Pandey GK. Potassium: a vital nutrient mediating stress tolerance in plants[J]. J Plant Biochem Biotechnol, 2022, 31(4): 705-719.
doi: 10.1007/s13562-022-00775-4 |
[6] |
Zhang M, Jin ZH, Zhang X, et al. Alleviation of Cd phytotoxicity and enhancement of rape seedling growth by plant growth-promoting bacterium Enterobacter sp. Zm-123[J]. Environ Sci Pollut Res Int, 2020, 27(26): 33192-33203.
doi: 10.1007/s11356-020-09558-7 |
[7] | 马欣, 成妍, 马蓉丽. 植物根围促生细菌促生机制研究进展[J]. 山东农业科学, 2019, 51(5): 148-154. |
Ma X, Cheng Y, Ma RL. Research progress of growth-promoting mechanisms of plant growth-promoting rhizobacteria[J]. Shandong Agric Sci, 2019, 51(5): 148-154. | |
[8] | 贾峥嵘, 郝佳丽, 郝艳芳, 等. 四种芽孢杆菌菌剂对甘薯不同时期产量及品质的影响[J]. 作物杂志, 2023(1): 170-175. |
Jia ZR, Hao JL, Hao YF, et al. Effects of four Bacillus species on yield and quality of sweet potato at different stages[J]. Crops, 2023(1): 170-175. | |
[9] | 周童晖, 卜建超, 张皓珊, 等. 巨菌草根际高效解磷菌的筛选[J]. 福建农林大学学报: 自然科学版, 2023, 52(1): 26-32. |
Zhou TH, Bu JC, Zhang HS, et al. Isolation and characterization of highly efficient phosphate-solubilizing bacteria colonizing Cenchrus fungigraminus rhizosphere[J]. J Fujian Agric For Univ Nat Sci Ed, 2023, 52(1): 26-32. | |
[10] | 张慧洁, 刘俊琢, 吴永红. 藻、菌配合施用对水稻土磷有效性及微生物群落的影响[J]. 土壤学报, 2022, 59(5): 1369-1377. |
Zhang HJ, Liu JZ, Wu YH. Effects of combined application of algae and bacteria on paddy soil phosphorus availability and microbial community[J]. Acta Pedol Sin, 2022, 59(5): 1369-1377. | |
[11] |
Saadouli I, Mosbah A, Ferjani R, et al. The impact of the inoculation of phosphate-solubilizing bacteria Pantoea agglomerans on phosphorus availability and bacterial community dynamics of a semi-arid soil[J]. Microorganisms, 2021, 9(8): 1661.
doi: 10.3390/microorganisms9081661 URL |
[12] | 宋倩倩, 李苏冉, 胡宇辰, 等. 一株解淀粉芽孢杆菌胞外多糖的分离纯化及其抗氧化性研究[J]. 天津理工大学学报, 2022, 38(5): 27-36. |
Song QQ, Li SR, Hu YC, et al. Research on isolation, purification and antioxidant activity of exopolysaccharide from Bacillus amyloliquefaciens[J]. J Tianjin Univ Technol, 2022, 38(5): 27-36. | |
[13] | 胡秀月, 吴庆华, 黄保成, 等. 钼蓝比色法测定不同种质何首乌磷脂的含量[J]. 大众科技, 2014, 16(5): 92-94. |
Hu XY, Wu QH, Huang BC, et al. Determination of phospholipid in different germplasm of Polygonum multiflorum by molybdenum blue colorimetry[J]. Pop Sci Technol, 2014, 16(5): 92-94. | |
[14] | 张小红, 马绍英, 李胜, 等. 接种根瘤菌对重茬豌豆土壤养分及酶活性的影响[J]. 土壤通报, 2022, 53(6): 1360-1367. |
Zhang XH, Ma SY, Li S, et al. Effects of Rhizobium inoculation on soil nutrients and enzyme activities of continuous crop pea[J]. Chin J Soil Sci, 2022, 53(6): 1360-1367. | |
[15] | 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. |
Guan SY. Soil enzyme and its research method[M]. Beijing: Agricultural Press, 1986. | |
[16] | 杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008: 26-75. |
Yang JH, Wang CL, Dai HL. Soil agrochemical analysis and environmental monitoring[M]. Beijing: China Land Press, 2008: 26-75. | |
[17] | 黄昆鹏, 董昆乐, 李芳芳, 等. 烟草抗病嫁接对根际土壤微生物多样性的影响[J]. 江苏农业科学, 2023, 51(20): 239-247. |
Huang KP, Dong KL, Li FF, et al. Impacts of disease-resistant grafting on microbial diversity in rhizosphere soil of tobacco[J]. Jiangsu Agric Sci, 2023, 51(20): 239-247. | |
[18] |
Li ZK, Chen YL, Ling AF, et al. Effects of biocontrol agents application on soil bacterial community and the quality of tobacco[J]. Curr Microbiol, 2022, 79(11): 320.
doi: 10.1007/s00284-022-02937-y pmid: 36121540 |
[19] | 朱培淼, 杨兴明, 徐阳春, 等. 高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J]. 应用生态学报, 2007, 18(1): 107-112. |
Zhu PM, Yang XM, Xu YC, et al. High effective phosphate-solubilizing bacteria: their isolation and promoting effect on corn seedling growth[J]. Chin J Appl Ecol, 2007, 18(1): 107-112. | |
[20] |
徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1226 |
Xu HY, Lv J, Yu C. Growth promoting of Pinus massoniana seedlings regulated by rhizosphere phosphate-solubilizing Paraburkholderia spp[J]. Biotechnol Bull, 2023, 39(6): 274-285. | |
[21] |
Rawat P, Das S, Shankhdhar D, et al. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. J Soil Sci Plant Nutr, 2021, 21(1): 49-68.
doi: 10.1007/s42729-020-00342-7 |
[22] | 马莹, 程莹莹, 石孝均, 等. 溶磷菌在磷素循环和生态农业中的作用与其生物肥料应用[J]. 微生物学报, 2023, 63(12):4502-4521. |
Ma Y, Cheng YY, Shi XJ, et al. Phosphorus-solubilizing bacteria: roles in phosphorus cycling and ecological agriculture and application as potential biofertilizers[J]. Acta Microbiol Sin, 2023, 63(12):4502-4521. | |
[23] |
Xing PF, Zhao YB, Guan DW, et al. Effects of Bradyrhizobium co-inoculated with Bacillus and Paenibacillus on the structure and functional genes of soybean rhizobacteria community[J]. Genes, 2022, 13(11): 1922.
doi: 10.3390/genes13111922 URL |
[24] | 索雲凯, 刘丽红, 张雷, 等. 解钾菌解钾作用研究进展[J]. 当代化工, 2021, 50(4): 924-929. |
Suo YK, Liu LH, Zhang L, et al. Research progress of potassium solubilization by potassium solubilizing bacteria[J]. Contemp Chem Ind, 2021, 50(4): 924-929. | |
[25] |
Reed SC, Cleveland CC, Townsend AR. Functional ecology of free-living nitrogen fixation: a contemporary perspective[J]. Annu Rev Ecol Evol Syst, 2011, 42: 489-512.
doi: 10.1146/ecolsys.2011.42.issue-1 URL |
[26] | 徐晔, 张金池, 王广林, 等. 固氮酶的研究进展[J]. 生物学杂志, 2011, 28(4): 61-64. |
Xu Y, Zhang JC, Wang GL, et al. Advance of study on nitrogenase[J]. J Biol, 2011, 28(4): 61-64. | |
[27] | 徐云龙, 周游, 汪军, 等. 一株自生固氮菌的分离鉴定及其对不同品种香蕉的促生特性[J/OL]. 热带作物学报, 2023. https://kns.cnki.net/kcms/detail/46.1019.S.20230404.1815.006.html. |
Xu YL, Zhou Y, Wang J, et al. Isolation and identification of a nitrogen fixing bacteria and its growth promoting characteristics on different banana varieties[J/OL]. Chin J Trop Crops, 2023. https://kns.cnki.net/kcms/detail/46.1019.S.20230404.1815.006.html. | |
[28] |
王振龙, 杜江, 牛勇, 等. 若尔盖高寒补播草地燕麦根际促生菌的筛选及促生特性研究[J]. 草地学报, 2023, 31(5): 1406-1413.
doi: 10.11733/j.issn.1007-0435.2023.05.015 |
Wang ZL, Du J, Niu Y, et al. Screening and growth-promoting characteristics of plant growth-promoting rhizobacteria of oat rhizosphere in alpine reseeding grassland of zoige[J]. Acta Agrestia Sin, 2023, 31(5): 1406-1413. | |
[29] |
覃仁柳, 林刚云, 吴银秀, 等. 桑树青枯病与根际土壤肥力及微生物群落结构特征的研究[J]. 中国生物防治学报, 2021, 37(6): 1256-1264.
doi: 10.16409/j.cnki.2095-039x.2021.06.014 |
Qin RL, Lin GY, Wu YX, et al. Characteristic of soil fertility and microbial community structure in rhizosphere of bacterial wilt infected and non-infected mulberry plants[J]. Chin J Biol Contr, 2021, 37(6): 1256-1264. | |
[30] |
Mao LT, Lai LE, Lin GG, et al. Differences in rhizosphere microbiota compositions between healthy and diseased potato(Solanum tuberosum)in China[J]. Appl Ecol Env Res, 2020, 18(2): 3683-3691.
doi: 10.15666/aeer URL |
[31] |
Liu HJ, Xiong W, Zhang RF, et al. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora[J]. Plant Soil, 2018, 423(1): 229-240.
doi: 10.1007/s11104-017-3504-6 URL |
[32] |
Bharti N, Barnawal D, Maji D, et al. Halotolerant PGPRs prevent major shifts in indigenous microbial community structure under salinity stress[J]. Microb Ecol, 2015, 70(1): 196-208.
doi: 10.1007/s00248-014-0557-4 pmid: 25542205 |
[33] | Ganz HH, Karaoz U, Getz WM, et al. Diversity and structure of soil bacterial communities associated with vultures in an African savanna[J]. Ecosphere, 2012, 3(6): 1-18. |
[34] |
Li QA, Lei ZF, Song XZ, et al. Biochar amendment decreases soil microbial biomass and increases bacterial diversity in Moso bamboo(Phyllostachys edulis)plantations under simulated nitrogen deposition[J]. Environ Res Lett, 2018, 13(4): 044029.
doi: 10.1088/1748-9326/aab53a URL |
[35] | 周彤, 董思奇, 冯国忠, 等. 新型氮肥施用对东北黑土区玉米根际土壤固氮菌 nifH 基因多样性的影响[J/OL]. 吉林农业大学学报, 2023. https://doi.org/10.13327/j.jjlau.2023.20235. |
Zhou T, Dong SQ, Feng GZ, et al. Effect of novel nitrogen fertilizer application on nifH gene community of nitrogen-fixing bacteria in rhizosphere soil of maize in the black soil area of Northeast China[J/OL]. J Jilin Agric Univ, 2023. https://doi.org/10.13327/j.jjlau.2023.20235. |
[1] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
[2] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[3] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[4] | 张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108. |
[5] | 常泸尹, 王中华, 李凤敏, 高梓源, 张辉红, 王祎, 李芳, 韩燕来, 姜瑛. 玉米根际多功能促生菌的筛选及其对冬小麦-夏玉米轮作体系产量提升效果[J]. 生物技术通报, 2024, 40(1): 231-242. |
[6] | 林鑫焱, 张传忠, 戴兵, 王馨珩, 刘剑锋, 温丽, 徐兴健, 方军. 水稻穗发芽遗传与分子机制的研究进展[J]. 生物技术通报, 2024, 40(1): 24-31. |
[7] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[8] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[9] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[10] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[11] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[12] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[13] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[14] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[15] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||