生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 66-73.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1178
张震1(), 李清2, 徐菁2, 陈凯园2, 张春芝2, 祝光涛1()
收稿日期:
2023-12-13
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
祝光涛,男,博士,教授,研究方向:马铃薯基因组学与分子育种;E-mail: zhuguangtao@ynnu.edu.cn作者简介:
张震,男,硕士,研究方向:马铃薯分子育种;E-mail: zzhen1181@163.com李清为本文共同第一作者
基金资助:
ZHANG Zhen1(), LI Qing2, XU Jing2, CHEN Kai-yuan2, ZHANG Chun-zhi2, ZHU Guang-tao1()
Received:
2023-12-13
Published:
2024-05-26
Online:
2024-06-13
摘要:
【目的】植物线粒体基因变异是产生细胞质雄性不育(cytoplasmic male sterility,CMS)的主要原因,利用生物技术是创造CMS不育系的重要手段。通过比较启动子、线粒体转运信号肽(mitochondrial targeting signal peptides,MTS)的不同组合对下游eGFP的表达强弱,来探究最佳马铃薯线粒体靶向表达载体。【方法】选择3个启动子AtUBI10、StUBI10、2×35S和两个线粒体转运信号肽ATPγ与Rf1b进行试验,利用烟草叶片瞬时表达系统和PEG介导马铃薯原生质体转化体系进行靶向载体的表达验证。【结果】六个线粒体靶向表达载体中AtUBI10::ATPγ-eGFP在烟草瞬时表达效果最佳,可准确定位到线粒体,其次为StUBI10::ATPγ-eGFP和2×35S::ATPγ-eGFP;在马铃薯原生质体中载体AtUBI10::ATPγ-eGFP有最佳的表达效果,与烟草中表达结果一致,其次是StUBI10::Rf1b-eGFP和AtUBI10::Rf1b-eGFP,而2×35S启动子的两个载体在原生质体均表达较弱。【结论】启动子AtUBI10与线粒体转运信号肽ATPγ所构建的靶向线粒体载体为最佳组合,可用于马铃薯线粒体基因的相关研究中。
张震, 李清, 徐菁, 陈凯园, 张春芝, 祝光涛. 马铃薯线粒体靶向表达载体的构建与应用[J]. 生物技术通报, 2024, 40(5): 66-73.
ZHANG Zhen, LI Qing, XU Jing, CHEN Kai-yuan, ZHANG Chun-zhi, ZHU Guang-tao. Construction and Application of Potato Mitochondrial Targeted Expression Vector[J]. Biotechnology Bulletin, 2024, 40(5): 66-73.
扩增片段Amplified fragment | 引物序列Primer sequence(5'-3') | ||
---|---|---|---|
2×35S启动子组合 | 2×35S | F | TATGACCATGATTACGAATTCGCTAGAGCAGCTTGCCAACATG |
2×35S | R | CCATTGCCATGGATCCAAGCTTGAAGAGAGAGAC | |
2×35S | R* | GGCGTGCCATGGTCGATCGACAGATCTGCG | |
ATPγ | F | TCGATCGACCATGGCAATGGCTGTTTTCCG | |
ATPγ | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
Rf1b | F | TCGATCGACCATGGCACGCCGCGTCGCTG | |
Rf1b | R | TGCTCACCATGCGGTTGAAGCGGGACAC | |
eGFP | F | AGTTCAAGGCATGGTGAGCAAGGGCGAGG | |
eGFP | F* | CTTCAACCGCATGGTGAGCAAGGGCGAGG | |
eGFP | R | ACGACGGCCAGTGCCAAGCTTGATCTAGTAACATAGATGACACCGC | |
StUBI10启动子组合 | StUBI10 | F | TATGACCATGATTACGAATTCCCAAGACAATTTCAGCTTAAAAAGT |
StUBI10 | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
StUBI10 | R* | CGCGGCGTGCCATGGATCCAAGCTTGAATCTGCAAATTC | |
ATPγ | F | GCTTGGATCCATGGCAATGGCTGTTTTCCG | |
ATPγ | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
Rf1b | F | GCTTGGATCCATGGCACGCCGCGTCGCTG | |
Rf1b | R | TGCTCACCATGCGGTTGAAGCGGGACAC | |
eGFP | F | AGTTCAAGGCATGGTGAGCAAGGGCGAGG | |
eGFP | F* | CTTCAACCGCATGGTGAGCAAGGGCGAGG | |
eGFP | R | ACGACGGCCAGTGCCAAGCTTGATCTAGTAACATAGATGACACCGC | |
AtUBI10启动子组合 | AtUBI10 | F | TATGACCATGATTACGAATTCATACGCTTCAATGCAGTGG |
AtUBI10 | R | CCATTGCCATTGATAACTCTAGAATCTGTTAATCA | |
AtUBI10 | R* | GGCGTGCCATTGATAACTCTAGAATCTGTTAATCA | |
ATPγ | F | AGAGTTATCAATGGCAATGGCTGTTTTCCG | |
ATPγ | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
Rf1b | F | AGAGTTATCAATGGCACGCCGCGTCGCTG | |
Rf1b | R | TGCTCACCATGCGGTTGAAGCGGGACAC | |
eGFP | F | AGTTCAAGGCATGGTGAGCAAGGGCGAGG | |
eGFP | F* | CTTCAACCGCATGGTGAGCAAGGGCGAGG | |
eGFP | R | ACGACGGCCAGTGCCAAGCTTGATCTAGTAACATAGATGACACCGC | |
P2300 | F | GTTAGCTCACTCATTAGGCAC | |
P2300 | R | GCTGGCGTAATAGCGAAGAG |
表1 本研究所用PCR引物序列
Table 1 PCR primer sequences used in this study
扩增片段Amplified fragment | 引物序列Primer sequence(5'-3') | ||
---|---|---|---|
2×35S启动子组合 | 2×35S | F | TATGACCATGATTACGAATTCGCTAGAGCAGCTTGCCAACATG |
2×35S | R | CCATTGCCATGGATCCAAGCTTGAAGAGAGAGAC | |
2×35S | R* | GGCGTGCCATGGTCGATCGACAGATCTGCG | |
ATPγ | F | TCGATCGACCATGGCAATGGCTGTTTTCCG | |
ATPγ | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
Rf1b | F | TCGATCGACCATGGCACGCCGCGTCGCTG | |
Rf1b | R | TGCTCACCATGCGGTTGAAGCGGGACAC | |
eGFP | F | AGTTCAAGGCATGGTGAGCAAGGGCGAGG | |
eGFP | F* | CTTCAACCGCATGGTGAGCAAGGGCGAGG | |
eGFP | R | ACGACGGCCAGTGCCAAGCTTGATCTAGTAACATAGATGACACCGC | |
StUBI10启动子组合 | StUBI10 | F | TATGACCATGATTACGAATTCCCAAGACAATTTCAGCTTAAAAAGT |
StUBI10 | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
StUBI10 | R* | CGCGGCGTGCCATGGATCCAAGCTTGAATCTGCAAATTC | |
ATPγ | F | GCTTGGATCCATGGCAATGGCTGTTTTCCG | |
ATPγ | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
Rf1b | F | GCTTGGATCCATGGCACGCCGCGTCGCTG | |
Rf1b | R | TGCTCACCATGCGGTTGAAGCGGGACAC | |
eGFP | F | AGTTCAAGGCATGGTGAGCAAGGGCGAGG | |
eGFP | F* | CTTCAACCGCATGGTGAGCAAGGGCGAGG | |
eGFP | R | ACGACGGCCAGTGCCAAGCTTGATCTAGTAACATAGATGACACCGC | |
AtUBI10启动子组合 | AtUBI10 | F | TATGACCATGATTACGAATTCATACGCTTCAATGCAGTGG |
AtUBI10 | R | CCATTGCCATTGATAACTCTAGAATCTGTTAATCA | |
AtUBI10 | R* | GGCGTGCCATTGATAACTCTAGAATCTGTTAATCA | |
ATPγ | F | AGAGTTATCAATGGCAATGGCTGTTTTCCG | |
ATPγ | R | TGCTCACCATGCCTTGAACTGCTCTAAGCTTGG | |
Rf1b | F | AGAGTTATCAATGGCACGCCGCGTCGCTG | |
Rf1b | R | TGCTCACCATGCGGTTGAAGCGGGACAC | |
eGFP | F | AGTTCAAGGCATGGTGAGCAAGGGCGAGG | |
eGFP | F* | CTTCAACCGCATGGTGAGCAAGGGCGAGG | |
eGFP | R | ACGACGGCCAGTGCCAAGCTTGATCTAGTAACATAGATGACACCGC | |
P2300 | F | GTTAGCTCACTCATTAGGCAC | |
P2300 | R | GCTGGCGTAATAGCGAAGAG |
图2 烟草瞬时侵染eGFP与线粒体共定位图示 A1为载体AtUBI10::ATPγ-eGFP,A2为载体AtUBI10::Rf1b-eGFP;B1为载体StUBI10::ATPγ-eGFP,B2为载体StUBI10::Rf1b-eGFP;C1为载体2×35S::ATPγ-eGFP,C2为载体2×35S::Rf1b-eGFP;mCherry为线粒体定位Marker。下同
Fig. 2 Colocalization of eGFP and mitochondria in transient tobacco infection A1 is the vector AtUBI10::ATPγ-eGFP, A2 is the vector AtUBI10::Rf1b-eGFP; B1 is the vector StUBI10::ATPγ-eGFP, B2 is the vector StUBI10::Rf1b-eGFP; C1 is the carrier 2×35S::ATPγ-eGFP, C2 is the carrier 2×35S::Rf1b-eGFP. Mitochondrial localization marker by mCherry. The same below
图3 烟草瞬时侵染与马铃薯原生质体转化荧光强度统计 A为烟草瞬时侵染中各载体eGFP与mCherry的平均荧光数值统计,B为马铃薯原生质体转化中各载体eGFP与mCherry的平均荧光数值统计;荧光数值测量重复3次,误差线代表重复之间的标准差;ns代表t检验无差异,*代表t检验所得显著差异(P<0.05)
Fig. 3 Fluorescence intensity statistics of tobacco transient infestation and potato protoplast transformation A is the average fluorescence value statistics of eGFP and mCherry for each vector in tobacco transient infestation, and B is the average fluorescence value statistics of eGFP and mCherry for each vector in potato protoplast transformation. Data are in mean±SD(n=3). ns indicates no significant differences according to student's t-test, and *(P<0.05)indicates significant differences according to student's t-test
[1] |
Stokstad E. The new potato[J]. Science, 2019, 363(6427): 574-577.
doi: 10.1126/science.363.6427.574 pmid: 30733400 |
[2] | 屈冬玉, 谢开云, 金黎平, 等. 中国马铃薯产业发展与食物安全[J]. 中国农业科学, 2005, 38(2): 358-362. |
Qu DY, Xie KY, Jin LP, et al. Development of potato industry and food safety in China[J]. Sci Agric Sin, 2005, 38(2): 358-362. | |
[3] |
Fan L, Wu DF, Goremykin V, et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria[J]. Nat Ecol Evol, 2020, 4(9): 1213-1219.
doi: 10.1038/s41559-020-1239-x pmid: 32661403 |
[4] | Bohra A, Jha UC, Adhimoolam P, et al. Cytoplasmic male sterility(CMS)in hybrid breeding in field crops[J]. Plant Cell Rep, 2016, 35(5): 967-993. |
[5] |
Chase CD. Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions[J]. Trends Genet, 2007, 23(2): 81-90.
doi: 10.1016/j.tig.2006.12.004 pmid: 17188396 |
[6] |
Bentolila S, Stefanov S. A reevaluation of rice mitochondrial evolution based on the complete sequence of male-fertile and male-sterile mitochondrial genomes[J]. Plant Physiol, 2012, 158(2): 996-1017.
doi: 10.1104/pp.111.190231 pmid: 22128137 |
[7] | Cheng SH, Zhuang JY, Fan YY, et al. Progress in research and development on hybrid rice: a super-domesticate in China[J]. Ann Bot, 2007, 100(5): 959-966. |
[8] | Xie F, Yuan JL, Li YX, et al. Transcriptome analysis reveals candidate genes associated with leaf etiolation of a cytoplasmic male sterility line in Chinese cabbage(Brassica rapa L. ssp. pekinensis)[J]. Int J Mol Sci, 2018, 19(4): 922. |
[9] | 燕厚兴, 林春晶, 范亚军, 等. 植物细胞质雄性不育基因克隆及分子机制研究进展[J]. 植物生理学报, 2022, 58(1): 61-76. |
Yan HX, Lin CJ, Fan YJ, et al. Research progress on cloning and molecular mechanism of cytoplasmic male sterility genes in plants[J]. Plant Physiol J, 2022, 58(1): 61-76. | |
[10] | Yang JH, Liu XY, Yang XD, et al. Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea[J]. BMC Plant Biol, 2010, 10: 231. |
[11] | Jiang HC, Lu Q, Qiu SQ, et al. Fujian cytoplasmic male sterility and the fertility restorer gene OsRf19 provide a promising breeding system for hybrid rice[J]. Proc Natl Acad Sci USA, 2022, 119(34): e2208759119. |
[12] |
Luo DP, Xu H, Liu ZL, et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice[J]. Nat Genet, 2013, 45(5): 573-577.
doi: 10.1038/ng.2570 pmid: 23502780 |
[13] |
He S, Abad AR, Gelvin SB, et al. A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco[J]. Proc Natl Acad Sci USA, 1996, 93(21): 11763-11768.
doi: 10.1073/pnas.93.21.11763 pmid: 8876211 |
[14] |
Wang ZH, Zou YJ, Li XY, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing[J]. Plant Cell, 2006, 18(3): 676-687.
doi: 10.1105/tpc.105.038240 pmid: 16489123 |
[15] | Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2(7): 1565-1572. |
[16] | 叶明旺. 二倍体马铃薯遗传转化体系的建立及S-RNase基因编辑的研究[D]. 昆明: 云南师范大学, 2018. |
Ye MW. Establishment of transformation system for diploid potato and the study of transgenic with S-RNase gene editing[D]. Kunming: Yunnan Normal University, 2018. | |
[17] |
Zhang CZ, Yang ZM, Tang D, et al. Genome design of hybrid potato[J]. Cell, 2021, 184(15): 3873-3883.e12.
doi: 10.1016/j.cell.2021.06.006 pmid: 34171306 |
[18] | 陈彦儒. 粘果山羊草(Aegilops kotschyi)细胞质雄性不育小麦KTP116A育性恢复基因位点Rfk1的精细定位及分子克隆[D]. 杨凌: 西北农林科技大学, 2021. |
Chen YR. Fine mapping and molecular clone of fertility restorer locus Rfk1 for cytoplasmic male sterile wheat KTP116A with Aegilops kotschyi cytoplasm[D]. Yangling: Northwest A & F University, 2021. | |
[19] |
Xue ZY, Xu X, Zhou Y, et al. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice[J]. Nat Commun, 2018, 9(1): 604.
doi: 10.1038/s41467-018-03048-8 pmid: 29426861 |
[20] | 易冬莲, 陈卫江. 甘蓝型油菜杂种优势利用研究与应用[J]. 湖南农业科学, 2002(S1): 21-22, 26. |
Yi DL, Chen WJ. Study and application of heterosis utilization in Brassica napus L[J]. Hunan Agric Sci, 2002(S1): 21-22, 26. | |
[21] | Ding XL, Guo QL, Li Q, et al. Comparative transcriptomics analysis and functional study reveal important role of high-temperature stress response gene GmHSFA2 during flower bud development of CMS-based F1 in soybean[J]. Front Plant Sci, 2020, 11: 600217. |
[22] | 周瑞阳, 张新, 张加强, 等. 红麻细胞质雄性不育系的选育及杂种优势利用取得突破[J]. 中国农业科学, 2008, 41(1): 314. |
Zhou RY, Zhang X, Zhang JQ, et al. A breakthrough in kenaf cytoplasmic male sterile lines breeding and heterosis utilization[J]. Sci Agric Sin, 2008, 41(1): 314. | |
[23] | 段琉颖, 吴婷, 李霞, 等. 水稻细胞质雄性不育及其育性恢复基因的研究进展[J]. 作物杂志, 2022(1): 20-30. |
Duan LY, Wu T, Li X, et al. Progress on cytoplasmic male sterility and fertility restoration genes in rice[J]. Crops, 2022(1): 20-30. | |
[24] | Yang HL, Xue YD, Li B, et al. The chimeric gene atp6c confers cytoplasmic male sterility in maize by impairing the assembly of the mitochondrial ATP synthase complex[J]. Mol Plant, 2022, 15(5): 872-886. |
[25] |
Toriyama K. Molecular basis of cytoplasmic male sterility and fertility restoration in rice[J]. Plant Biotechnol, 2021, 38(3): 285-295.
doi: 10.5511/plantbiotechnology.21.0607a pmid: 34782814 |
[26] |
Sanetomo R, Akai K, Nashiki A. Discovery of a novel mitochondrial DNA molecule associated with tetrad pollen sterility in potato[J]. BMC Plant Biol, 2022, 22(1): 302.
doi: 10.1186/s12870-022-03669-8 pmid: 35725378 |
[27] |
Peng XJ, Wang K, Hu CF, et al. The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice[J]. BMC Plant Biol, 2010, 10: 125.
doi: 10.1186/1471-2229-10-125 pmid: 20576097 |
[28] | Kim DH, Kang JG, Kim BD. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper(Capsicum annuum L.)[J]. Plant Mol Biol, 2007, 63(4): 519-532. |
[29] | Ji JJ, Huang W, Li Z, et al. Tapetum-specific expression of a cytoplasmic orf507 gene causes semi-male sterility in transgenic peppers[J]. Front Plant Sci, 2015, 6: 272. |
[30] |
Xie XR, Zhang ZX, Zhao Z, et al. The mitochondrial aldehyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice[J]. J Exp Bot, 2020, 71(9): 2551-2560.
doi: 10.1093/jxb/eraa045 pmid: 31989154 |
[31] | 景兵. 芥菜型油菜胞质不育Hau CMS不育相关基因的鉴定及其功能分析[D]. 武汉: 华中农业大学, 2012. |
Jing B. Identification and function analysis of hau CMS-associated gene in Brassica juncea[D]. Wuhan: Huazhong Agricultural University, 2012. | |
[32] | 张垲, 余冰菲, 陈瑞川, 等. 荧光定量检测细胞绿色荧光蛋白技术的建立与应用[J]. 厦门大学学报: 自然科学版, 2008, 47(S2): 264-267. |
Zhang K, Yu BF, Chen RC, et al. Establishment and application of fluorescence quantitative detection technology for cell green fluorescent protein[J]. J Xiamen Univ Nat Sci, 2008, 47(S2): 264-267. |
[1] | 潘萍萍, 徐志浩, 张怡雯, 李青, 王忠华. 多花黄精查尔酮合酶PcCHS的原核表达、亚细胞定位及表达分析[J]. 生物技术通报, 2024, 40(5): 280-289. |
[2] | 张玉, 石磊, 巩檑, 聂峰杰, 杨江伟, 刘璇, 杨文静, 张国辉, 颉瑞霞, 张丽. 马铃薯WOX基因家族的鉴定及在离体再生和非生物胁迫中的表达分析[J]. 生物技术通报, 2024, 40(3): 170-180. |
[3] | 梅显军, 宋慧洋, 李京昊, 梅超, 宋倩娜, 冯瑞云, 陈喜明. 马铃薯StDof5的克隆及表达分析[J]. 生物技术通报, 2024, 40(3): 181-192. |
[4] | 杨艳, 胡洋, 刘霓如, 殷璐, 杨锐, 王鹏飞, 穆霄鹏, 张帅, 程春振, 张建成. ‘红满堂’苹果MbbZIP43基因的克隆与功能研究[J]. 生物技术通报, 2024, 40(2): 146-159. |
[5] | 朱毅, 柳唐镜, 宫国义, 张洁, 王晋芳, 张海英. 西瓜ClPP2C3克隆及表达分析[J]. 生物技术通报, 2024, 40(1): 243-249. |
[6] | 谢宏, 周丽莹, 李舒文, 王梦迪, 艾晔, 晁跃辉. 蒺藜苜蓿MtCIM基因结构和功能分析[J]. 生物技术通报, 2024, 40(1): 262-269. |
[7] | 刘雯锦, 马瑞, 刘升燕, 杨江伟, 张宁, 司怀军. 马铃薯StCIPK11的克隆及响应干旱胁迫分析[J]. 生物技术通报, 2023, 39(9): 147-155. |
[8] | 吕秋谕, 孙培媛, 冉彬, 王佳蕊, 陈庆富, 李洪有. 苦荞转录因子基因FtbHLH3的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 194-203. |
[9] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[10] | 安苗, 王彤彤, 付逸婷, 夏俊俊, 彭锁堂, 段永红. 52个马铃薯遗传多样性分析及SSR分子身份证构建[J]. 生物技术通报, 2023, 39(12): 136-147. |
[11] | 滕梦鑫, 徐亚, 何静, 汪奇, 乔飞, 李敬阳, 李新国. 香蕉MaMC6的克隆及原核表达分析[J]. 生物技术通报, 2023, 39(12): 179-186. |
[12] | 尚怡彤, 闫欢欢, 王丽红, 田学琴, 薛萍红, 罗涛, 胡志宏. 米曲霉磷酸甲羟戊酸激酶功能研究[J]. 生物技术通报, 2023, 39(12): 311-319. |
[13] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[14] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[15] | 杨佳宝, 周至铭, 张展, 冯丽, 孙黎. 向日葵HaLACS1的克隆、表达及酵母功能互补鉴定[J]. 生物技术通报, 2022, 38(6): 147-156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||