生物技术通报 ›› 2024, Vol. 40 ›› Issue (7): 216-225.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0070
收稿日期:
2024-01-16
出版日期:
2024-07-26
发布日期:
2024-07-30
通讯作者:
王芳,女,博士,副教授,研究方向:植物抗病性;E-mail: wangfangnd@hotmail.com基金资助:
WANG Fang1(), YU Lu1, QI Ze-zheng1, ZHOU Chang-jun2, YU Ji-dong2
Received:
2024-01-16
Published:
2024-07-26
Online:
2024-07-30
摘要:
【目的】 镰刀菌根腐病是世界范围内大豆生产上最具破坏性的土传病害之一,为获得对禾谷镰刀菌Fusarium graminearum具有较好拮抗效果的生防菌株。【方法】 从健康大豆根际土壤分离细菌,平板对峙法筛选拮抗菌株,通过形态观察、生理生化特性、胞外酶活性及促生特性对菌株进行鉴定分析,采用盆栽试验进一步测定菌株生防及促生效果。【结果】 筛选出的4株芽孢杆菌和1株假单胞杆菌对F. graminearum的抑菌率均达到60%以上,对F. oxysporum,F. solani,F. longifundum以及 F. equiseti也均有一定的抑制作用,其发酵液及挥发代谢物均会影响F. graminearum的生长。5株拮抗菌具有产蛋白酶、纤维素酶以及葡聚糖酶的活性,解磷、解钾、固氮以及产铁载体的能力。综合以上测试结果,菌株20-8具有较强的抑菌及大豆促生效果。根据形态特征及16S rRNA序列分析,将菌株20-8鉴定为暹罗芽孢杆菌(Bacillus siamensis)。该菌株的发酵上清液可以破坏F. graminearum菌丝体结构,无细胞发酵上清液可以显著抑制孢子萌发。室内盆栽防效测定结果表明,20-8的稀释发酵液对F. graminearum引起大豆根腐病的防效可达46.08%,并且促进大豆植株生长。【结论】 筛选鉴定的暹罗芽孢杆菌20-8具有解磷、解钾、固氮以及产铁载体及多种胞外酶功能,其稀释发酵液具有较强的抗真菌活性及大豆促生能力,菌株20-8可以用于防治F. graminearum引起的大豆根腐病。
王芳, 于璐, 齐泽铮, 周长军, 于吉东. 大豆镰刀菌根腐病拮抗菌的筛选及生防效果[J]. 生物技术通报, 2024, 40(7): 216-225.
WANG Fang, YU Lu, QI Ze-zheng, ZHOU Chang-jun, YU Ji-dong. Screening and Biocontrol Effect of Antagonistic Bacteria against Soybean Root Rot[J]. Biotechnology Bulletin, 2024, 40(7): 216-225.
图1 拮抗菌对不同镰刀菌的抑制作用 A:拮抗菌对镰刀菌抑制作用;B:F. graminearum的生长直径。不同小写字母表示在P < 0.05 水平差异显著,下同
Fig. 1 Inhibitory effects of antagonistic bacteria on different Fusarium species A: Inhibitory effect of antagonistic bacteria on Fusarium strains. B: Inhibition rate colony diameter of F. graminearum. Different lowercase letters indicate significant differences at the level of 0.05, the same below
菌株 Strain | 革兰氏染色 Gram stain | 接触酶试验Contact enzyme test | 氧化酶试验 Oxidase test | 甲基红试验 Methyl red | V-P试验 V-P test | 明胶液化 Gelatin liquefaction | 吲哚试验 Indole test | 淀粉水解Starch hydrolysis test | 苯丙氨酸脱氨酶试验 Phenylalanine deaminase test |
---|---|---|---|---|---|---|---|---|---|
20-8 | + | - | + | + | - | - | - | + | - |
A54-1 | + | - | + | + | - | + | - | + | - |
A54-5 | + | - | + | + | - | - | - | + | - |
A54-6 | + | - | + | + | - | + | - | + | - |
P-7 | + | + | + | + | - | + | - | + | - |
表1 拮抗菌的生理生化鉴定结果
Table 1 Physiological and biochemical characteristics of antagonistic bacteria
菌株 Strain | 革兰氏染色 Gram stain | 接触酶试验Contact enzyme test | 氧化酶试验 Oxidase test | 甲基红试验 Methyl red | V-P试验 V-P test | 明胶液化 Gelatin liquefaction | 吲哚试验 Indole test | 淀粉水解Starch hydrolysis test | 苯丙氨酸脱氨酶试验 Phenylalanine deaminase test |
---|---|---|---|---|---|---|---|---|---|
20-8 | + | - | + | + | - | - | - | + | - |
A54-1 | + | - | + | + | - | + | - | + | - |
A54-5 | + | - | + | + | - | - | - | + | - |
A54-6 | + | - | + | + | - | + | - | + | - |
P-7 | + | + | + | + | - | + | - | + | - |
菌株 Strain | 蛋白酶 Proteinase | 纤维素酶 Cellulase | 葡聚糖酶 Glucanase | 几丁质酶 Chitinase |
---|---|---|---|---|
20-8 | + | + | + | - |
A54-1 | + | + | + | - |
A54-5 | + | + | + | - |
A54-6 | + | + | + | - |
P-7 | + | + | + | - |
表2 拮抗菌胞外酶活性
Table 2 Extracellular enzyme activity of antagonistic bacteria
菌株 Strain | 蛋白酶 Proteinase | 纤维素酶 Cellulase | 葡聚糖酶 Glucanase | 几丁质酶 Chitinase |
---|---|---|---|---|
20-8 | + | + | + | - |
A54-1 | + | + | + | - |
A54-5 | + | + | + | - |
A54-6 | + | + | + | - |
P-7 | + | + | + | - |
菌株 Strain | 溶磷Phosphorus dissolution | 溶钾Potassium dissolution | 固氮Nitrogen fixation | 载铁 Iron carrier |
---|---|---|---|---|
20-8 | + | + | + | + |
A54-1 | + | + | + | + |
A54-5 | + | + | + | + |
A54-6 | + | + | + | + |
P-7 | + | + | + | + |
表3 拮抗菌促生特性鉴定
Table 3 Growth-promoting characteristics of antagonistic bacteria
菌株 Strain | 溶磷Phosphorus dissolution | 溶钾Potassium dissolution | 固氮Nitrogen fixation | 载铁 Iron carrier |
---|---|---|---|---|
20-8 | + | + | + | + |
A54-1 | + | + | + | + |
A54-5 | + | + | + | + |
A54-6 | + | + | + | + |
P-7 | + | + | + | + |
图3 拮抗菌对F. graminearum生长的抑制作用 A:发酵液处理下的F. graminearum 菌落形态;B:F. graminearum生长直径;C:挥发代谢物处理下的F. graminearum 菌落形态;D:F. graminearum生长直径
Fig. 3 Inhibitory effects of antagonistic bacteria on the growth of F. graminearum A: Morphology of F. graminearum colony treated with fermentation broth. B: Colony diameter of F. graminearum. C: Morphology of F. graminearum colony treated with volatile metabolite. D: Colony diameter of F. graminearum
图5 菌株20-8发酵液对F. graminearum菌丝形态影响 A:未经发酵液处理的菌丝; B-C:菌株20-8处理24 h的菌丝
Fig. 5 Effects of strain 20-8 fermentation solution on the mycelium morphology of F. graminearum A: Mycelium untreated with fermentation solution. B-C: Mycelium treated by fermentation solution for 24 h
图6 菌株20-8不同浓度的无细胞发酵液对F. graminearum孢子萌发影响 A:孢子萌发显微镜观察;B:孢子萌发率
Fig. 6 Effects of strain 20-8 cell-free fermentation supernatant at different concentrations on spore germination of F. graminearum A: Microscopic observation of spore germination. B: Spore germination rate
处理 Treatment | 株高Plant height/cm | 根长Root length/cm | 鲜重Green weight/g | 干重Dry weight/g | 病情指数 Disease index/% | 死亡率 Mortality rate/% | 防治效果 Prevention effect/% |
---|---|---|---|---|---|---|---|
CK | 12.33±1.13ab | 15.42±2.53ab | 2.54±0.11ab | 0.27±0.03ab | |||
20-8 | 13.56±0.71a | 16.68±3.12a | 2.92±0.19a | 0.31±0.02a | |||
20-8+ F.graminearum | 11.82±0.41ab | 11.71±1.96ab | 2.10±0.13b | 0.22±0.01bc | 38.19 | 18.75 | 46.08 |
F.graminearum | 9.94±0.25b | 8.05±0.71b | 1.30±0.11c | 0.19±0.02c | 70.83 | 71.43 |
表4 菌株20-8对大豆幼苗的促生效果及根腐病防治效果
Table 4 Effects of strain 20-8 on the growth-promoting of soybean seedlings and root rot prevention
处理 Treatment | 株高Plant height/cm | 根长Root length/cm | 鲜重Green weight/g | 干重Dry weight/g | 病情指数 Disease index/% | 死亡率 Mortality rate/% | 防治效果 Prevention effect/% |
---|---|---|---|---|---|---|---|
CK | 12.33±1.13ab | 15.42±2.53ab | 2.54±0.11ab | 0.27±0.03ab | |||
20-8 | 13.56±0.71a | 16.68±3.12a | 2.92±0.19a | 0.31±0.02a | |||
20-8+ F.graminearum | 11.82±0.41ab | 11.71±1.96ab | 2.10±0.13b | 0.22±0.01bc | 38.19 | 18.75 | 46.08 |
F.graminearum | 9.94±0.25b | 8.05±0.71b | 1.30±0.11c | 0.19±0.02c | 70.83 | 71.43 |
[1] | Peng DL, Jiang R, Peng H, et al. Soybean cyst nematodes: a destructive threat to soybean production in China[J]. Phytopathol Res, 2021, 3(1): 19. |
[2] | Chang XL, Dai H, Wang DP, et al. Identification of Fusarium species associated with soybean root rot in Sichuan Province, China[J]. Eur J Plant Pathol, 2018, 151(3): 563-577. |
[3] | Chang XL, Yan L, Naeem M, et al. Maize/soybean relay strip intercropping reduces the occurrence of Fusarium root rot and changes the diversity of the pathogenic Fusarium species[J]. Pathogens, 2020, 9(3): 211. |
[4] | Chang XL, Naeem M, Li HJ, et al. First report of Fusarium asiaticum as a causal agent for seed decay of soybean(Glycine max)in Sichuan, China[J]. Plant Dis, 2020, 104(5): 1542. |
[5] | Hafez M, Abdelmagid A, Aboukhaddour R, et al. Fusarium root rot complex in soybean: molecular characterization, trichothecene formation, and cross-pathogenicity[J]. Phytopathology, 2021, 111(12): 2287-2302. |
[6] |
Broders KD, Lipps PE, Paul PA, et al. Evaluation of Fusarium graminearum associated with corn and soybean seed and seedling disease in Ohio[J]. Plant Dis, 2007, 91(9): 1155-1160.
doi: 10.1094/PDIS-91-9-1155 pmid: 30780657 |
[7] |
Chandra NS, Wulff EG, Udayashankar AC, et al. Prospects of molecular markers in Fusarium species diversity[J]. Appl Microbiol Biotechnol, 2011, 90(5): 1625-1639.
doi: 10.1007/s00253-011-3209-3 pmid: 21494869 |
[8] | Ellis ML, Arias MMD, Cruz Jimenez DR, et al. First report of Fusarium commune causing damping-off, seed rot, and seedling root rot on soybean(Glycine max)in the United States[J]. Plant Dis, 2013, 97(2): 284. |
[9] | 王爽, 李新民, 刘春来, 等. 引起黑龙江省大豆根腐病的镰刀菌种类鉴定及致病分析[J]. 植物病理学报, 2023, 53(1): 126-128. |
Wang S, Li XM, Liu CL, et al. Identification and pathogenicity of Fusarium species causing soybean root rot in Heilongjiang Province[J]. Acta Phytopathol Sin, 2023, 53(1): 126-128. | |
[10] | Naeem M, Munir M, Li HJ, et al. Transcriptional responses of Fusarium graminearum interacted with soybean to cause root rot[J]. J Fungi, 2021, 7(6): 422. |
[11] | Zhang J, Xia MC, Xue BG, et al. First report of Fusarium pseudograminearum causing root rot on soybean(Glycine max)in Henan, China[J]. Plant Dis, 2018, 102(7): 1454. |
[12] | Hartman G, Chang HX, Leandro L. Research advances and management of soybean sudden death syndrome[J]. Crop Prot, 2015, 73: 60-66. |
[13] | 李柯, 郑素娇, 王晓莉, 等. 251份大豆品种(系)对大豆疫霉及多种镰孢菌的抗性评价[J]. 南京农业大学学报, 2022, 45(2): 261-268. |
Li K, Zheng SJ, Wang XL, et al. Identification of resistance of 251 soybean cultivars(lines)to Phytophthora sojae and Fusarium spp.[J]. J Nanjing Agric Univ, 2022, 45(2): 261-268. | |
[14] | Xi XD, Fan JL, Yang XY, et al. Evaluation of the anti-oomycete bioactivity of rhizosphere soil-borne isolates and the biocontrol of soybean root rot caused by Phytophthora sojae[J]. Biol Contr, 2022, 166: 104818. |
[15] | Jiang CH, Wu F, Yu ZY, et al. Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch(BFB)caused by Acidovorax avenae subsp. citrulli[J]. Microbiol Res, 2015, 170: 95-104. |
[16] | Chen K, Tian ZH, He H, et al. Bacillus species as potential biocontrol agents against citrus diseases[J]. Biol Contr, 2020, 151: 104419. |
[17] | Mishra J, Arora NK. Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture[J]. Appl Soil Ecol, 2018, 125: 35-45. |
[18] | Rodovikov SA, Churakov AA, Popova NM, et al. Bacterial strains for biological control of Fusarium root rot of soybean in Siberia[J]. IOP Conf Ser: Earth Environ Sci, 2020, 548(4): 042054. |
[19] |
Hashem A, Tabassum B, Fathi Abd Allah E. Bacillus subtilis: a plant-growth promoting rhizobacterium that also impacts biotic stress[J]. Saudi J Biol Sci, 2019, 26(6): 1291-1297.
doi: 10.1016/j.sjbs.2019.05.004 pmid: 31516360 |
[20] | Hazarika DJ, Goswami G, Gautom T, et al. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens[J]. BMC Microbiol, 2019, 19(1): 71. |
[21] |
褚睿, 李昭轩, 张学青, 等. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1574 |
Chu R, Li ZX, Zhang XQ, et al. Screening and identification of antagonistic Bacillus spp. against cucumber Fusarium wilt and its biocontrol effect[J]. Biotechnol Bull, 2023, 39(8): 262-271. | |
[22] |
金艳丽, 姚拓, 兰晓君, 等. 燕麦根腐病拮抗菌的筛选及抑菌特性研究[J]. 草地学报, 2022, 30(5): 1095-1101.
doi: 10.11733/j.issn.1007-0435.2022.05.009 |
Jin YL, Yao T, Lan XJ, et al. Screening of antagonistic bacteria of oat root rot and studies of antibacterial properties[J]. Acta Agrestia Sin, 2022, 30(5): 1095-1101. | |
[23] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. |
Dong XZ, Cai MY. Handbook of identification of common bacterial systems[M]. Beijing: Science Press, 2001. | |
[24] | 布坎南. 伯杰细菌鉴定手册: 第八版[M]. 8版. 北京: 科学出版社, 1984. |
Buchanan RE. Bergey's manual of determinative bacteriology[M]. 8th ed. Beijing: Science Press, 1984. | |
[25] | 张武, 杨树, 项鹏, 等. 哈茨木霉拌种对大豆生长及大豆根腐病的影响[J]. 黑龙江农业科学, 2023(7): 41-46. |
Zhang W, Yang S, Xiang P, et al. Effects of seed dressing treatment with Trichoderma harzianum on soybean growth and root rot disease[J]. Heilongjiang Agric Sci, 2023(7): 41-46. | |
[26] |
Mohanram S, Kumar P. Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions[J]. Ann Microbiol, 2019, 69(4): 307-320.
doi: 10.1007/s13213-019-01448-9 |
[27] | You WJ, Ge CH, Jiang ZC, et al. Screening of a broad-spectrum antagonist-Bacillus siamensis, and its possible mechanisms to control postharvest disease in tropical fruits[J]. Biol Contr, 2021, 157: 104584. |
[28] | He HT, Zhai QH, Tang YN, et al. Effective biocontrol of soybean root rot by a novel bacterial strain Bacillus siamensis HT1[J]. Physiol Mol Plant Pathol, 2023, 125: 101984. |
[29] | Karim H, Azis AA, Jumadi O. Antagonistic activity and characterization of indigenous soil isolates of bacteria and fungi against onion wilt incited by Fusarium sp.[J]. Arch Microbiol, 2021, 204(1): 68. |
[30] |
杨东亚, 祁瑞雪, 李昭轩, 等. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0522 |
Yang DY, Qi RX, Li ZX, et al. Screening, identification and growth-promoting effect of antagonistic Bacillus spp. against cucumber Fusarium solani[J]. Biotechnol Bull, 2023, 39(2): 211-220. | |
[31] | 朱杰, 程亮, 姚强, 等. 枸杞根腐致病菌及拮抗菌的分离鉴定[J]. 西北农业学报, 2023, 32(7): 1120-1130. |
Zhu J, Cheng L, Yao Q, et al. Isolation and identification of pathogenic fungi and antagonistic bacteria from Lycium barbarum root rot[J]. Acta Agric Boreali Occidentalis Sin, 2023, 32(7): 1120-1130. | |
[32] |
Elsherbiny EA, Dawood DH, Safwat NA. Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit[J]. Pestic Biochem Physiol, 2021, 171: 104721.
doi: 10.1016/j.pestbp.2020.104721 pmid: 33357543 |
[33] | 贾方方, 许跃奇, 阎海涛, 等. 烟草镰刀菌根腐病(Fusarium spp.)拮抗菌L210的鉴定及生防潜力评价[J]. 烟草科技, 2023, 56(10): 40-48. |
Jia FF, Xu YQ, Yan HT, et al. Identification and biocontrol potential evaluation of antagonistic bacterial strain L210 against Fusarium spp. of tobacco root rot[J]. Tob Sci Technol, 2023, 56(10): 40-48. | |
[34] | Agbodjato NA, Noumavo PA, Adjanohoun A, et al. Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize(Zea mays L.)[J]. Biotechnol Res Int, 2016, 2016: 7830182. |
[35] |
Liu YP, Shu X, Chen L, et al. Plant commensal type VII secretion system causes iron leakage from roots to promote colonization[J]. Nat Microbiol, 2023, 8(8): 1434-1449.
doi: 10.1038/s41564-023-01402-1 pmid: 37248429 |
[1] | 范宗强, 冯靖涵, 郑丽雪, 王硕, 彭向前, 陈芳. 枯草芽孢杆菌B579对黄瓜枯萎病的防治及其诱导抗性研究[J]. 生物技术通报, 2024, 40(7): 226-234. |
[2] | 徐伟芳, 李贺宇, 张慧, 何仔昂, 高文恒, 谢紫洋, 王传文, 尹登科. 生防细菌HX0037对栝楼炭疽病的防病能力及其机制[J]. 生物技术通报, 2024, 40(4): 228-241. |
[3] | 王璐, 刘梦雨, 张富源, 纪守坤, 王云, 张英杰, 段春辉, 刘月琴, 严慧. 瘤胃源粪臭素降解菌的分离鉴定及其降解特性研究[J]. 生物技术通报, 2024, 40(3): 305-311. |
[4] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
[5] | 王俊芳, 黄秋斌, 张飘丹, 张彭湃. Surfactin的结构、生物合成及其在生物防治中的作用[J]. 生物技术通报, 2024, 40(1): 100-112. |
[6] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[7] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[8] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[9] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[10] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[11] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[12] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[13] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[14] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[15] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||