生物技术通报

• 综述与专论 •    下一篇

梭菌属(Clostridium)产乙酸菌代谢工程改造与合成气定向转化研究现状

刘修平1(), 朱星宇1(), 汪光义1,2()   

  1. 1.天津大学环境科学与工程学院,天津 300072
    2.天津大学青岛海洋技术研究院,青岛 266200
  • 收稿日期:2025-03-17 出版日期:2025-07-17 发布日期:2025-07-17
  • 通讯作者: 汪光义,男,博士,教授,研究方向 :微生物代谢调控与合成生物学;E-mail: gywang@tju.edu.cn
  • 作者简介:刘修平,女,博士研究生,研究方向 :微生物代谢工程;E-mail: liuxp880@tju.edu.cn
    刘修平,女,博士研究生,研究方向 :微生物代谢工程;E-mail: liuxp880@tju.edu.cn
  • 基金资助:
    国家自然科学基金项目(32170063)

Research Progress in Metabolic Engineering for Modification and Syngas-directed Conversion by Acetogenic Clostridium

LIU Xiu-ping1(), ZHU Xing-yu1(), WANG Guang-yi1,2()   

  1. 1.School of Environmental Science & Engineering, Tianjin University, Tianjin 300072
    2.Qingdao Institute of Ocean Technology, Tianjin University, Qingdao 266200
  • Received:2025-03-17 Published:2025-07-17 Online:2025-07-17

摘要:

发展微生物固碳技术对于遏制全球气候变暖有重要意义。梭菌属(Clostridium)产乙酸菌能够固定CO2和CO等一碳气体并将其转化为乙醇等化学产品,从而打破对化石燃料的依赖,是合成气规模化定向转化的潜力菌种。本文综述了梭菌属产乙酸菌的代谢工程改造与合成气定向转化研究现状。首先,对梭菌属产乙酸菌的能量代谢方式进行了解析,阐述了梭菌属产乙酸菌的能量节约机制;其次,对梭菌属产乙酸菌的多种遗传操作工具进行了对比和总结;最后,梳理了当前梭菌属产乙酸菌代谢工程改造两个大方向的前景和存在的问题。总之,本文总结了近年来梭菌属产乙酸菌的代谢工程研究进展,以期为更全面了解该工业微生物的合成气转化潜力提供参考,推动梭菌属产乙酸菌生产可再生能源的平台建设。

关键词: 梭菌属产乙酸菌, 能量节约机制, 代谢工程, 合成气

Abstract:

The development of microbial carbon sequestration technology is crucial for curbing global warming. Acetogenic Clostridium can fix one-carbon gases, such as CO2 and CO, and convert them into chemical products, such as ethanol, thereby reducing dependence on fossil fuels, which makes acetogenic Clostridium a promising strain for converting syngas into high-value products on a large scale. This review summarizes the research progress in metabolic engineering modifications of acetogenic Clostridium and the directional conversion of syngas. Firstly, the energy metabolism modes of acetogenic Clostridium have been analyzed, and the energy conservation mechanisms of acetogenic Clostridium have been elaborated. Then, various tools for genetic manipulation of acetogenic Clostridium have been compared and summarized. Finally, the current prospects and challenges in the two major directions of metabolic engineering modification of acetogenic Clostridium have been sorted out. In conclusion, this paper summarizes the research progress in metabolic engineering ofacetogenic Clostridium inrecent years, aiming to provide references for more comprehensive understanding of its syngas conversion potential, and promote the development of renewable energy production platform using industrial acetogenic Clostridium.

Key words: acetogenic Clostridium, energy conservation mechanism, metabolic engineering, syngas