| 1 |
Bashir K, Matsui A, Rasheed S, et al. Recent advances in the characterization of plant transcriptomes in response to drought, salinity, heat, and cold stress [J]. F1000Res, 2019, 8(F1000 Faculty Rev): 658.
|
| 2 |
Mahmood U, Li XD, Fan YH, et al. Multi-omics revolution to promote plant breeding efficiency [J]. Front Plant Sci, 2022, 13: 1062952.
|
| 3 |
Abdelraheem A, Esmaeili N, O’Connell M, et al. Progress and perspective on drought and salt stress tolerance in cotton [J]. Ind Crops Prod, 2019, 130: 118-129.
|
| 4 |
Ergashovich KA, Azamatovna BZ, Toshtemirovna NU, et al. Ecophysiological effects of water deficiency on cotton varieties [J]. J Crit Rev, 2020, 7(9): 244-246.
|
| 5 |
Sajid M, Amjid M, Munir H, et al. Comparative analysis of growth and physiological responses of sugarcane elite genotypes to water stress and sandy loam soils [J]. Plants (Basel), 2023, 12(15): 2759.
|
| 6 |
Fang YJ, Liao KF, Du H, et al. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice [J]. J Exp Bot, 2015, 66(21): 6803-6817.
|
| 7 |
Deeba F, Pandey AK, Ranjan S, et al. Physiological and proteomic responses of cotton (Gossypium herbaceum L.) to drought stress [J]. Plant Physiol Biochem, 2012, 53: 6-18.
|
| 8 |
Hussain S, Hussain S, Qadir T, et al. Drought stress in plants: an overview on implications, tolerance mechanisms and agronomic mitigation strategies [J]. Plant Sci Today, 2019, 6(4): 389-402.
|
| 9 |
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, et al. Osmoregulation and its actions during the drought stress in plants [J]. Physiol Plant, 2021, 172(2): 1321-1335.
|
| 10 |
Pao SS, Paulsen IT, Jr Saier MH. Major facilitator superfamily [J]. Microbiol Mol Biol Rev, 1998, 62(1): 1-34.
|
| 11 |
Quistgaard EM, Löw C, Guettou F, et al. Understanding transport by the major facilitator superfamily (MFS): structures pave the way [J]. Nat Rev Mol Cell Biol, 2016, 17(2): 123-132.
|
| 12 |
Hwang JU, Song WY, Hong D, et al. Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle [J]. Mol Plant, 2016, 9(3): 338-355.
|
| 13 |
Guo RZ, Zhang Q, Qian K, et al. Phosphate-dependent regulation of vacuolar trafficking of OsSPX-MFSs is critical for maintaining intracellular phosphate homeostasis in rice [J]. Mol Plant, 2023, 16(8): 1304-1320.
|
| 14 |
Julião MHM, Silva SR, Ferro JA, et al. A genomic and transcriptomic overview of mate, abc, and MFS transporters in Citrus sinensis interaction with Xanthomonas citri subsp. citri [J]. Plants (Basel), 2020, 9(6): 794.
|
| 15 |
Boorer KJ, Loo DD, Wright EM. Steady-state and presteady-state kinetics of the H+/hexose cotransporter (STP1) from Arabidopsis thaliana expressed in Xenopus oocytes [J]. J Biol Chem, 1994, 269(32): 20417-20424.
|
| 16 |
Cordoba E, Aceves-Zamudio DL, Hernández-Bernal AF, et al. Sugar regulation of sugar transporter protein 1 (stp1) expression in Arabidopsis thaliana [J]. J Exp Bot, 2015, 66(1): 147-159.
|
| 17 |
Büttner M, Truernit E, Baier K, et al. AtSTP3, a green leaf-specific, low affinity monosaccharide-H+ symporter of Arabidopsis thaliana [J]. Plant Cell Environ, 2000, 23(2): 175-184.
|
| 18 |
Segonzac C, Boyer JC, Ipotesi E, et al. Nitrate efflux at the root plasma membrane: identification of an Arabidopsis excretion transporter [J]. Plant Cell, 2007, 19(11): 3760-3777.
|
| 19 |
Liu WW, Sun Q, Wang K, et al. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis [J]. New Phytol, 2017, 214(2): 734-744.
|
| 20 |
Taochy C, Gaillard I, Ipotesi E, et al. The Arabidopsis root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress [J]. Plant J, 2015, 83(3): 466-479.
|
| 21 |
Liu TY, Huang TK, Yang SY, et al. Identification of plant vacuolar transporters mediating phosphate storage [J]. Nat Commun, 2016, 7: 11095.
|
| 22 |
Lu JY, Wang CL, Wang HY, et al. OsMFS1/OsHOP2 complex participates in rice male and female development [J]. Front Plant Sci, 2020, 11: 518.
|
| 23 |
Kong H, Hou MJ, Ma B, et al. Calcium-dependent protein kinase GhCDPK4 plays a role in drought and abscisic acid stress responses [J]. Plant Sci, 2023, 332: 111704.
|
| 24 |
Mandel MA, Feldmann KA, Herrera-Estrella L, et al. CLA1 a novel gene required for chloroplast development, is highly conserved in evolution [J]. Plant J, 1996, 9(5): 649-658.
|
| 25 |
Wei TL, Wang Y, Xie ZZ, et al. Enhanced ROS scavenging and sugar accumulation contribute to drought tolerance of naturally occurring autotetraploids in Poncirus trifoliata [J]. Plant Biotechnol J, 2019, 17(7): 1394-1407.
|
| 26 |
Zou LP, Qi DF, Sun JB, et al. Expression of the cassava nitrate transporter NRT2.1 enables Arabidopsis low nitrate tolerance [J]. J Genet, 2019, 98: 74.
|
| 27 |
Yan HL, Xu WX, Xie JY, et al. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies [J]. Nat Commun, 2019, 10(1): 2562.
|
| 28 |
Zhang XM, Feng JJ, Zhao RL, et al. Functional characterization of the GhNRT2.1e gene reveals its significant role in improving nitrogen use efficiency in Gossypium hirsutum [J]. PeerJ, 2023, 11: e15152.
|
| 29 |
Liu FJ, Cai S, Dai LJ, et al. Two PHOSPHATE-TRANSPORTER1 genes in cotton enhance tolerance to phosphorus starvation [J]. Plant Physiol Biochem, 2023, 204: 108128.
|
| 30 |
Qiao KK, Lv JY, Chen LL, et al. GhSTP18, a member of sugar transport proteins family, negatively regulates salt stress in cotton [J]. Physiol Plant, 2023, 175(4): e13982.
|
| 31 |
Chen BZ, Wang XY, Lv JY, et al. GhN/AINV13 positively regulates cotton stress tolerance by interacting with the 14-3-3 protein [J]. Genomics, 2021, 113(1 Pt 1): 44-56.
|
| 32 |
Zhang Q, Ma C, Wang X, et al. Genome-wide identification of the light-harvesting chlorophyll a/b binding (Lhc) family in Gossypium hirsutum reveals the influence of GhLhcb2.3 on chlorophyll a synthesis [J]. Plant Biol, 2021, 23(5): 831-842.
|
| 33 |
Hano C, Drouet S, Lainé E. Virus-induced gene silencing (VIGS) in flax (Linum usitatissimum L.) seed coat: description of an effective procedure using the transparent testa 2 gene as a selectable marker [J]. Methods Mol Biol, 2020, 2172: 233-242.
|