生物技术通报 ›› 2025, Vol. 41 ›› Issue (2): 248-256.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0430
• 研究报告 • 上一篇
收稿日期:
2024-05-09
出版日期:
2025-02-26
发布日期:
2025-02-28
通讯作者:
刁桂萍,女,博士,副教授,研究方向 :植物抗病机制;E-mail: dgp2003@126.com作者简介:
黄颖,女,博士,助理研究员,研究方向 :植物-微生物互作;E-mail: yy122bb@163.com
基金资助:
HUANG Ying1,2(), YU Wen-jing2, LIU Xue-feng1, DIAO Gui-ping1(
)
Received:
2024-05-09
Published:
2025-02-26
Online:
2025-02-28
摘要:
目的 分析山新杨谷胱甘肽转移酶(GST)基因的表达模式,为深入研究木本植物GST基因的功能提供基础。 方法 克隆山新杨GST基因并进行生物信息学分析,通过荧光定量PCR技术分析GST基因在植物激素及非生物胁迫下的表达模式。 结果 克隆了3个PdbGST基因家族成员,分别命名为PdbGST1、PdbGST2和PdbGST3,cDNA全长分别为678、660和690 bp,编码氨基酸分别为225、219和229个,形成的蛋白质均为稳定亲水酸性蛋白,且均定位于细胞质。同时,这3个蛋白质均具有谷胱甘肽转移酶的典型结构,且其启动子区域具有能够响应生物或非生物胁迫以及植物激素的元件。此外,这3个基因的表达不同程度地受外源植物激素或非生物胁迫诱导。 结论 3个PdbGST基因均能够不同程度地响应非生物胁迫或外源植物激素的诱导,可能参与到杨树对逆境胁迫的响应过程中。
黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256.
HUANG Ying, YU Wen-jing, LIU Xue-feng, DIAO Gui-ping. Bioinformatics and Expression Pattern Analysis of Glutathione S-transferase in Populus davidiana × P. bolleana[J]. Biotechnology Bulletin, 2025, 41(2): 248-256.
基因名称 Gene name | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) | 用途 Purpose |
---|---|---|---|
PdbGST1 | ATGGCAGAGGAAGTGAAGGTCTTTAG | TCATTTATGTGTTTCTTTTCTAAGAC | 基因克隆 |
PdbGST2 | ATGGCAGGAATAAAACTACTAGATTC | TCATTCAATCCCAAGCTTCTTCCTG | 基因克隆 |
PdbGST3 | ATGGCAAACACAGAGCTGGTGAAGC | TCAAGTCCGAAACCAGTTATGAGG | 基因克隆 |
PdbGST1-RT | ACCAGAAAGCCAATGCTCGT | GCCTCCCCACCGAAGAATTT | 荧光定量PCR |
PdbGST2-RT | GGTCTGGAATGACAGGTCTCCTTTGC | GGGCTTGTCTCCAAGCTCTCCTTC | 荧光定量PCR |
PdbGST3-RT | CCACTGATGCCTCAAGATCCTTACG | CCAGGTAGCCAATGTTCTCTCCTCC | 荧光定量PCR |
PdbEF1-α | TGGGTCGTGTTGAAACTGGTGT | GGCAGGATCGTCCTTGGAGTTC | 荧光定量PCR |
Pdbactin | GCTGAGAGATTCCGTTGCCCTG | GGCGGTGATCTCCTTGCTCATT | 荧光定量PCR |
表1 本研究所用引物
Table 1 Primers used in this study
基因名称 Gene name | 正向引物序列 Forward primer (5′-3′) | 反向引物序列 Reverse primer (5′-3′) | 用途 Purpose |
---|---|---|---|
PdbGST1 | ATGGCAGAGGAAGTGAAGGTCTTTAG | TCATTTATGTGTTTCTTTTCTAAGAC | 基因克隆 |
PdbGST2 | ATGGCAGGAATAAAACTACTAGATTC | TCATTCAATCCCAAGCTTCTTCCTG | 基因克隆 |
PdbGST3 | ATGGCAAACACAGAGCTGGTGAAGC | TCAAGTCCGAAACCAGTTATGAGG | 基因克隆 |
PdbGST1-RT | ACCAGAAAGCCAATGCTCGT | GCCTCCCCACCGAAGAATTT | 荧光定量PCR |
PdbGST2-RT | GGTCTGGAATGACAGGTCTCCTTTGC | GGGCTTGTCTCCAAGCTCTCCTTC | 荧光定量PCR |
PdbGST3-RT | CCACTGATGCCTCAAGATCCTTACG | CCAGGTAGCCAATGTTCTCTCCTCC | 荧光定量PCR |
PdbEF1-α | TGGGTCGTGTTGAAACTGGTGT | GGCAGGATCGTCCTTGGAGTTC | 荧光定量PCR |
Pdbactin | GCTGAGAGATTCCGTTGCCCTG | GGCGGTGATCTCCTTGCTCATT | 荧光定量PCR |
基因名称 Gene name | 基因长度 Length/bp | 氨基酸长度 Protein/aa | 蛋白质相对分子质量 Mw/kD | 等电点 Isoelectric point | 不稳定系数 Instability index (II) | 亲疏水性 GRAVY | 亚细胞定位 Localization |
---|---|---|---|---|---|---|---|
PdbGST1 | 678 | 225 | 25.95 | 5.59 | 49.41 | -0.201 | 细胞质 |
PdbGST2 | 660 | 219 | 25.29 | 6.33 | 49.32 | -0.295 | 细胞质 |
PdbGST3 | 690 | 229 | 26.83 | 5.78 | 54.49 | -0.257 | 细胞质 |
表2 PdbGST蛋白的理化性质
Table 2 Characteristics of PdbGSTs protein
基因名称 Gene name | 基因长度 Length/bp | 氨基酸长度 Protein/aa | 蛋白质相对分子质量 Mw/kD | 等电点 Isoelectric point | 不稳定系数 Instability index (II) | 亲疏水性 GRAVY | 亚细胞定位 Localization |
---|---|---|---|---|---|---|---|
PdbGST1 | 678 | 225 | 25.95 | 5.59 | 49.41 | -0.201 | 细胞质 |
PdbGST2 | 660 | 219 | 25.29 | 6.33 | 49.32 | -0.295 | 细胞质 |
PdbGST3 | 690 | 229 | 26.83 | 5.78 | 54.49 | -0.257 | 细胞质 |
图1 PdbGST蛋白的多序列比对KAG6769001、KAG6793805、KAG6757347:毛白杨;XP_034919935、XP_034900369、XP_034914570:山杨;XP_011004483、XP_011030495:胡杨;ANO39980、ANO40011、ANO40009:亚东杨;KAH8506839、KAH8495610:美洲黑杨;KAJ6992085、KAJ7014641、KAJ6981522:银中杨;XP_002307924、XP_006370194、XP_006378334:毛果杨
Fig. 1 Multiple alignment of PdbGST proteinKAG6769001, KAG6793805, KAG6757347: Populus tomentosa; XP_034919935, XP_034900369, XP_034914570: P. alba; XP_011004483, XP_011030495: P. euphratica; ANO39980, ANO40011, ANO40009: P. yatungensis; KAH8506839, KAH8495610: P. deltoides; KAJ6992085, KAJ7014641, KAJ6981522: P. alba×P. berolinensis; XP_002307924, XP_006370194, XP_006378334: P. trichocarpa
图4 PdbGST基因的组织特异性表达分析不同小写字母表示同一基因不同组织差异显著分析(P<0.05)
Fig. 4 Tissues expression analysis of PdbGSTs geneDifferent lowercase letters indicate significant differences between a gene in different tissues (P<0.05)
图5 PdbGST基因响应不同植物激素诱导的表达模式分析A:水杨酸(SA);B:脱落酸(ABA);C:1-氨基环丙基-1-羧酸(ACC);不同小写字母表示同一基因不同处理时间的差异显著分析(P<0.05)。下同
Fig. 5 Expression profiles of PdbGSTs under different phytohormones inductionA: SA treatment; B: ABA treatment; C: ACC treatment. Different lowercase letters indicate significant differences between a gene during the treatment (P<0.05). The same below
1 | Vaish S, Gupta D, Mehrotra R, et al. Glutathione S-transferase: a versatile protein family [J]. 3 Biotech, 2020, 10(7): 321. |
2 | Martínez-Márquez A, Martínez-Esteso MJ, Vilella-Antón MT, et al. A tau class glutathione-S-transferase is involved in Trans-resveratrol transport out of grapevine cells [J]. Front Plant Sci, 2017, 8: 1457. |
3 | Edwards R, Dixon DP. Plant glutathione transferases [J]. Meth Enzymol, 2005, 401: 169-186. |
4 | Kumar S, Trivedi PK. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants [J]. Front Plant Sci, 2018, 9: 751. |
5 | 张创娟. 植物谷胱甘肽转移酶及其响应非生物胁迫的研究 [D]. 兰州: 兰州交通大学, 2022. |
Zhang CJ. Study on plant glutathione transferase and its response to abiotic stress [D]. Lanzhou: Lanzhou Jiatong University, 2022. | |
6 | 郑永兴. 谷胱甘肽合成关键基因GST1参与小麦幼苗铜胁迫响应的分子机制 [D]. 郑州: 河南农业大学, 2020. |
Zheng YX. Molecular mechanism of glutathione synthesis key gene GST1 participating in the response of wheat seedlings to copper stress [D]. Zhengzhou: Henan Agricultural University, 2020. | |
7 | Kuluev BR, Ermoshin AA, Mikhaylova EV. Overexpression of the glutathione S-transferase ATGSTF11 gene improves growth and abiotic stress tolerance of tobacco transgenic plants [J]. Russ J Plant Physiol, 2022, 69(7): 148. |
8 | Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance [J]. Mol Biol Rep, 2011, 38(7): 4823-4832. |
9 | Sharma R, Sahoo A, Devendran R, et al. Over-expression of a rice tau class glutathione s-transferase gene improves tolerance to salinity and oxidative stresses in Arabidopsis [J]. PLoS One, 2014, 9(3): e92900. |
10 | Chronopoulou E, Madesis P, Tsaftaris A, et al. Cloning and characterization of a biotic-stress-inducible glutathione transferase from Phaseolus vulgaris [J]. Appl Biochem Biotechnol, 2014, 172(2): 595-609. |
11 | Lv WY, Jiang H, Cao QH, et al. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway [J]. Plant J, 2024, 117(5): 1356-1376. |
12 | 王鹏宇. PdbSCL1转录因子调控山新杨响应旱胁迫的分子机制[D]. 沈阳: 沈阳农业大学, 2023. |
Wang PY. Molecular mechanism of PdbSCL1 transcription factor regulating Populus davidiana × P . bolleana response to drought stress [D]. Shenyang: Shenyang Agricultural University, 2023. | |
13 | Huang Y, Ma HJ, Yue YZ, et al. Integrated transcriptomic and transgenic analyses reveal potential mechanisms of poplar resistance to Alternaria alternata infection [J]. BMC Plant Biol, 2022, 22(1): 413. |
14 | 遇文婧. 深绿木霉刺激植物响应蛋白TatEpl1诱导杨树系统抗病性机制 [D]. 哈尔滨: 东北林业大学, 2014. |
Yu WJ. Mechanism of poplar system disease resistance induced by Trichoderma viride stimulating plant response protein TatEpl1 [D]. Harbin: Northeast Forestry University, 2014. | |
15 | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method [J]. Methods, 2001, 25(4): 402-408. |
16 | Droog F. Plant glutathione S-transferases, a tale of theta and tau [J]. J Plant Growth Regul, 1997, 16(2): 95-107. |
17 | Kumar S, Asif MH, Chakrabarty D, et al. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses [J]. J Hazard Mater, 2013, 248/249: 228-237. |
18 | Jiang HW, Liu MJ, Chen IC, et al. A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development [J]. Plant Physiol, 2010, 154(4): 1646-1658. |
19 | Kampranis SC, Damianova R, Atallah M, et al. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast [J]. J Biol Chem, 2000, 275(38): 29207-29216. |
20 | Peng YJ, Yang JF, Li X, et al. Salicylic acid: biosynthesis and signaling [J]. Annu Rev Plant Biol, 2021, 72: 761-791. |
21 | Du MM, Zhao JH, Tzeng DTW, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato [J]. Plant Cell, 2017, 29(8): 1883-1906. |
22 | Fang Q, Jiang TZ, Xu LX, et al. A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis [J]. Plant Physiol Biochem, 2017, 114: 100-110. |
23 | Frova C. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution [J]. Physiol Plant, 2003, 119(4): 469-479. |
24 | Han Q, Chen R, Yang Y, et al. A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum [J]. Sci Hortic, 2016, 198: 370-378. |
25 | Xu J, Xing XJ, Tian YS, et al. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress [J]. PLoS One, 2015, 10(9): e0136960. |
26 | Jia BW, Sun MZ, Sun XL, et al. Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content [J]. Physiol Plant, 2016, 156(2): 176-189. |
27 | Wang ZY, Cai H, Bai X, et al. Isolation of GsGST19 from Glycine soja and analysis of saline-alkaline tolerance for transgenic Medicago sativa [J]. Acta Agron Sin, 2013, 38(6): 971-979. |
28 | Wang ZY, Song FB, Cai H, et al. Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativa [J]. Biol Plant, 2012, 56(3): 516-520. |
29 | 褚晶. 藜麦GST基因家族的鉴定与表达分析及发根农杆菌介导的GST基因功能研究 [D]. 烟台: 烟台大学, 2022. |
Chu J. Genome-wide analysis of glutathione S-transferase (CqGSTs) and study on their salt tolerance function in root system in quinoa (Chenopodium quinoa Willd.) [D]. Yantai: Yantai University, 2022. |
[1] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[2] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[3] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[4] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[5] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[6] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[7] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[8] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[9] | 郝楠, 耿珊, 赵雨薇, 侯智涵, 赵斌, 刘颖超. 拟轮枝镰孢丙氨酸转氨酶FvALT的克隆与表达分析[J]. 生物技术通报, 2024, 40(12): 256-263. |
[10] | 杨冲, 程莎莎, 艾长丰, 赵璇, 刘孟军. 枣ABF/AREB基因家族鉴定及其在果实发育中的表达分析[J]. 生物技术通报, 2024, 40(11): 184-191. |
[11] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[12] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[13] | 任丽, 乔舒婷, 葛晨辉, 魏梓桐, 徐晨曦. 菠菜PSY基因家族的鉴定与表达分析[J]. 生物技术通报, 2023, 39(12): 169-178. |
[14] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[15] | 于秋琳, 马婧怡, 赵盼, 孙鹏芳, 何玉美, 刘世彪, 郭惠红. 绞股蓝GpMIR156a和GpMIR166b的克隆与功能分析[J]. 生物技术通报, 2022, 38(7): 186-193. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 56
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||