生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 12-26.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0056

• 综述与专论 • 上一篇    下一篇

RNA结合蛋白在植物抗病中的研究进展

吕悦1(), 张杰伟2(), 王勃1()   

  1. 1.烟台大学生命科学学院,烟台 264005
    2.北京市农林科学院生物技术研究所,北京 100097
  • 收稿日期:2025-01-13 出版日期:2025-06-26 发布日期:2025-06-30
  • 通讯作者: ‍:‍王勃,女,博士,副教授,研究方向 :植物发育和抗病分子机制;E-mail: wangbo@ytu.edu.cn
    张杰伟,男,博士,副研究员,研究方向:作物分子育种;E-mail: jwzhang919@163.com
  • 作者简介:吕悦,女,硕士研究生,研究方向 :小麦白粉病抗病机制;E-mail: lvyue19819083151@163.com
  • 基金资助:
    ?:?北京市农林科学院科技创新能力建设专项(KJCX20230120);烟台大学研究生科研创新基金资助(KGIFYTU2411);小麦育种全国重点实验室开放课题2025

Research Progress in RNA Binding Proteins in Plant Disease Resistance

LYU Yue1(), ZHANG Jie-wei2(), WANG Bo1()   

  1. 1.School of Life Sciences, Yantai University, Yantai 264005
    2.Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097
  • Received:2025-01-13 Published:2025-06-26 Online:2025-06-30

摘要:

植物在生长发育过程中持续面临复杂的环境胁迫,严重制约其生长发育、农艺性状和生产力。为应对病原菌侵染等生物胁迫,植物进化出多层次的精密调控网络。近年来,转录后调控作为植物免疫研究的新兴热点领域,其通过动态调控信使RNA(mRNA)代谢过程,在植物抗病反应中展现出独特的优势。RNA结合蛋白(RNA binding proteins, RBPs)作为植物抗病调控网络的核心执行者,通过识别特定RNA基序调控pre-mRNA选择性剪接、mRNA稳定性、选择性多聚腺苷酸化(alternative polyadenylation, APA)、翻译进程及RNA修饰等关键环节,在植物-病原菌互作中发挥“分子开关”的作用。本文系统阐述了RBP介导的转录后调控机制及其在植物响应病原菌感染过程中的功能,如在病原识别阶段,RBP通过调控免疫受体mRNA的稳定性实现防御信号的快速启动;抗病应答阶段中,RBP介导抗病基因的选择性剪接,产生具有不同亚细胞定位或功能活性的转录本变体。此外,近年研究发现m6A等RNA表观修饰通过调控RBP的招募效率,在植物免疫中形成新的路径。本文深入探讨了植物通过RBP构建的多层次防御体系及其分子调控机制,并对RBP抗病机制研究方向、结合多组学改造RBP调控元件、构建作物抗病育种新策略等进行了展望。深入解析植物抗病过程中的RNA调控密码,为创制广谱抗病种质提供理论支撑,为开发创新绿色防控策略提供重要依据。

关键词: RNA结合蛋白, 选择性剪接, 翻译, mRNA稳定性, 选择性多聚腺苷酸化

Abstract:

During their growth and development, plants are continuously exposed to complex environmental stresses that severely constrain their growth, agronomic traits, and productivity. To combat biotic stresses such as pathogen infection, plants have evolved multilayered sophisticated regulatory networks. In recent years, post-transcriptional regulation has emerged as a novel research hotspot in plant immunity, demonstrating unique advantages in the resistance to disease through dynamic regulation of messenger RNA (mRNA) metabolism. RNA-binding proteins (RBPs), functioning as core executors in plant resistance-to-resistane networks, act as "molecular switches" in plant-pathogen interactions by recognizing specific RNA motifs to regulate critical processes including pre-mRNA alternative splicing, mRNA stability, alternative polyadenylation (APA), translation efficiency, and RNA modifications. This review systematically elaborates RBP-mediated post-transcriptional regulatory mechanisms and their functions during plant-pathogen interactions. For instance, at the pathogen-recogned stage, RBPs regulate mRNA stability of immune receptors to enable rapid activation of defense signals. During disease resistance responses, RBPs mediate alternative splicing of resistance genes to generate transcript variants with distinct subcellular localization or functional activities. Recent studies also reveal novel pathways in plant immunity where RNA epigenetic modifications (e.g., m6A) regulate RBP recruitment efficiency. This article provides in-depth analysis of the multilayered defense systems constructed through RBPs and their molecular regulatory mechanisms, while proposing future research directions including deciphering RBP-mediated disease resistance mechanisms, modifying RBP regulatory elements through multi-omics integration, and developing novel disease-resistant breeding strategies. Comprehensive understanding of RNA regulatory codes in plant immunity will offer theoretical foundations for creating broad-spectrum resistant germplasm and provide crucial references for developing innovative green control strategies.

Key words: RNA binding protein, alternative splicing, translation, mRNA stability, alternative polyadenylation