生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 28-35.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0615
收稿日期:
2023-06-28
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
丁杨林,男,副教授,研究方向:植物温度胁迫机理;E-mail: ding_yanglin@cau.edu.cn作者简介:
张晓燕,女,讲师,研究方向:植物低温信号转导;E-mail: zhangxiaoyan@cau.edu.cn
基金资助:
ZHANG Xiao-yan(), YANG Shu-hua, DING Yang-lin()
Received:
2023-06-28
Published:
2023-11-26
Online:
2023-12-20
摘要:
低温胁迫是影响植物生长、发育及作物产量的重要环境胁迫之一。植物通过感知低温信号并快速启动低温应答,以降低低温胁迫对其损伤。近年来,低温潜在感受器和低温调控网络逐渐被解析。植物可以在多个层面感知低温信号,但具体机制依然不清楚。当植物感知低温信号后,一些低温诱导的次级信号分子(如钙离子和活性氧)被植物解码并传递,以激活下游低温应答基因表达。同时,蛋白翻译后修饰可调控蛋白活性和稳定性,在植物早期低温信号传递中起关键作用。本文重点阐述植物感知和传递低温早期信号的分子机制,并讨论和展望低温胁迫领域面临的挑战及研究方向。
张晓燕, 杨淑华, 丁杨林. 植物感知和传递低温信号的分子机制[J]. 生物技术通报, 2023, 39(11): 28-35.
ZHANG Xiao-yan, YANG Shu-hua, DING Yang-lin. Molecular Mechanism of Cold Signal Perception and Transduction in Plants[J]. Biotechnology Bulletin, 2023, 39(11): 28-35.
图2 蛋白翻译后修饰介导的低温应答 A: 蛋白激酶OST1介导的磷酸化修饰增强植物耐冻性;B: PUB25和PUB26动态调控低温下CBFs基因表达
Fig. 2 Protein post-translational modifications involved in plant cold stress responses A: The phosphorylation modification mediated by the protein kinase OST1 enhances plant freezing tolerance. B: PUB25 and PUB26 dynamically regulate the expression of CBFs under cold stress
[1] |
Ding YL, Shi YT, Yang SH. Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants[J]. New Phytol, 2019, 222(4): 1690-1704.
doi: 10.1111/nph.15696 pmid: 30664232 |
[2] |
Thomashow MF. PLANT COLD ACCLIMATION: freezing tolerance genes and regulatory mechanisms[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571-599.
doi: 10.1146/arplant.1999.50.issue-1 URL |
[3] |
Ma Y, Dai XY, Xu YY, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6): 1209-1221.
doi: 10.1016/j.cell.2015.01.046 pmid: 25728666 |
[4] |
Ding YL, Shi YT, Yang SH. Molecular regulation of plant responses to environmental temperatures[J]. Mol Plant, 2020, 13(4): 544-564.
doi: S1674-2052(20)30034-4 pmid: 32068158 |
[5] |
Ding YL, Yang SH. Surviving and thriving: how plants perceive and respond to temperature stress[J]. Dev Cell, 2022, 57(8): 947-958.
doi: 10.1016/j.devcel.2022.03.010 pmid: 35417676 |
[6] |
Xiao R, Shawn Xu XZ. Temperature sensation: from molecular thermosensors to neural circuits and coding principles[J]. Annu Rev Physiol, 2021, 83: 205-230.
doi: 10.1146/annurev-physiol-031220-095215 pmid: 33085927 |
[7] |
McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation[J]. Nature, 2002, 416(6876): 52-58.
doi: 10.1038/nature719 |
[8] |
Peier AM, Moqrich A, Hergarden AC, et al. A TRP channel that senses cold stimuli and menthol[J]. Cell, 2002, 108(5): 705-715.
doi: 10.1016/s0092-8674(02)00652-9 pmid: 11893340 |
[9] |
Story GM, Peier AM, Reeve AJ, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures[J]. Cell, 2003, 112(6): 819-829.
doi: 10.1016/s0092-8674(03)00158-2 pmid: 12654248 |
[10] |
Todesco M, Kim ST, Chae E, et al. Activation of the Arabidopsis thaliana immune system by combinations of common ACD6 alleles[J]. PLoS Genet, 2014, 10(7): e1004459.
doi: 10.1371/journal.pgen.1004459 URL |
[11] | Zhu WS, Li L, Neuhäuser B, et al. Small peptides modulate the immune function of the ion channel-like protein ACD6 in Arabidopsis thaliana[J]. bioRxiv, 2021. DOI: https://doi.org/10.1101/2021.1101.1125.428077. |
[12] |
Sahoo DK, Hegde C, Bhattacharyya MK. Identification of multiple novel genetic mechanisms that regulate chilling tolerance in Arabidopsis[J]. Front Plant Sci, 2022, 13: 1094462.
doi: 10.3389/fpls.2022.1094462 URL |
[13] |
Gong JK, Liu JZ, Ronan EA, et al. A cold-sensing receptor encoded by a glutamate receptor gene[J]. Cell, 2019, 178(6): 1375-1386.e11.
doi: S0092-8674(19)30833-5 pmid: 31474366 |
[14] |
Grenzi M, Bonza MC, Costa A. Signaling by plant glutamate receptor-like channels: what else![J]. Curr Opin Plant Biol, 2022, 68: 102253.
doi: 10.1016/j.pbi.2022.102253 URL |
[15] |
Toyota M, Spencer D, Sawai-Toyota S, et al. Glutamate triggers long-distance, calcium-based plant defense signaling[J]. Science, 2018, 361(6407): 1112-1115.
doi: 10.1126/science.aat7744 pmid: 30213912 |
[16] |
Zheng Y, Luo LD, Wei JJ, et al. The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana[J]. Biochem Biophys Res Commun, 2018, 506(4): 895-900.
doi: 10.1016/j.bbrc.2018.10.153 URL |
[17] |
Mori K, Na RH, Naito M, et al. Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis[J]. Sci Rep, 2018, 8(1): 550.
doi: 10.1038/s41598-017-17483-y |
[18] |
Wang JC, Ren YL, Liu X, et al. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice[J]. Mol Plant, 2021, 14(2): 315-329.
doi: 10.1016/j.molp.2020.11.022 pmid: 33278597 |
[19] |
Cui YM, Lu S, Li Z, et al. CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice[J]. Plant Physiol, 2020, 183(4): 1794-1808.
doi: 10.1104/pp.20.00591 pmid: 32527735 |
[20] |
Liu QB, Ding YL, Shi YT, et al. The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants[J]. EMBO J, 2021, 40(2): e104559.
doi: 10.15252/embj.2020104559 URL |
[21] |
Zhang DJ, Guo XY, Xu YY, et al. OsCIPK7 point-mutation leads to conformation and kinase-activity change for sensing cold response[J]. J Integr Plant Biol, 2019, 61(12): 1194-1200.
doi: 10.1111/jipb.12800 |
[22] |
Guo XY, Zhang DJ, Wang ZL, et al. Cold-induced calreticulin OsCRT3 conformational changes promote OsCIPK7 binding and temperature sensing in rice[J]. EMBO J, 2023, 42(1): e110518.
doi: 10.15252/embj.2021110518 URL |
[23] |
Jung JH, Domijan M, Klose C, et al. Phytochromes function as thermosensors in Arabidopsis[J]. Science, 2016, 354(6314): 886-889.
doi: 10.1126/science.aaf6005 URL |
[24] |
Legris M, Klose C, Burgie ES, et al. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 2016, 354(6314): 897-900.
doi: 10.1126/science.aaf5656 URL |
[25] |
Chen D, Lyu MH, Kou XX, et al. Integration of light and temperature sensing by liquid-liquid phase separation of phytochrome B[J]. Mol Cell, 2022, 82(16): 3015-3029.e6.
doi: 10.1016/j.molcel.2022.05.026 pmid: 35728588 |
[26] |
Jiang BC, Shi YT, Peng Y, et al. Cold-induced CBF-PIF3 interaction enhances freezing tolerance by stabilizing the phyB thermosensor in Arabidopsis[J]. Mol Plant, 2020, 13(6): 894-906.
doi: 10.1016/j.molp.2020.04.006 URL |
[27] |
Zhao Y, Shi H, Pan Y, et al. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction[J]. Cell, 2023, 186(6): 1230-1243.e14.
doi: 10.1016/j.cell.2023.02.011 pmid: 36931246 |
[28] |
Fujii Y, Tanaka H, Konno N, et al. Phototropin perceives temperature based on the lifetime of its photoactivated state[J]. Proc Natl Acad Sci USA, 2017, 114(34): 9206-9211.
doi: 10.1073/pnas.1704462114 pmid: 28784810 |
[29] |
Li YP, Shi YT, Li MZ, et al. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis[J]. Plant Cell, 2021, 33(11): 3555-3573.
doi: 10.1093/plcell/koab215 URL |
[30] |
Ezer D, Jung JH, Lan H, et al. The evening complex coordinates environmental and endogenous signals in Arabidopsis[J]. Nat Plants, 2017, 3: 17087.
doi: 10.1038/nplants.2017.87 URL |
[31] |
Jung JH, Barbosa AD, Hutin S, et al. A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis[J]. Nature, 2020, 585(7824): 256-260.
doi: 10.1038/s41586-020-2644-7 |
[32] |
Chen WW, Takahashi N, Hirata Y, et al. A mobile ELF4 delivers circadian temperature information from shoots to roots[J]. Nat Plants, 2020, 6(4): 416-426.
doi: 10.1038/s41477-020-0634-2 pmid: 32284549 |
[33] |
Silva CS, Nayak A, Lai XL, et al. Molecular mechanisms of evening complex activity in Arabidopsis[J]. Proc Natl Acad Sci U S A, 2020, 117(12): 6901-6909.
doi: 10.1073/pnas.1920972117 URL |
[34] |
Knight H, Trewavas AJ, Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation[J]. Plant Cell, 1996, 8(3): 489-503.
doi: 10.1105/tpc.8.3.489 pmid: 8721751 |
[35] |
Boudsocq M, Sheen J. CDPKs in immune and stress signaling[J]. Trends Plant Sci, 2013, 18(1): 30-40.
doi: 10.1016/j.tplants.2012.08.008 pmid: 22974587 |
[36] |
Polisensky DH, Braam J. Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels[J]. Plant Physiol, 1996, 111(4): 1271-1279.
pmid: 8756505 |
[37] |
Doherty CJ, van Buskirk HA, Myers SJ, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009, 21(3): 972-984.
doi: 10.1105/tpc.108.063958 URL |
[38] |
Kim YS, An CF, Park S, et al. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection[J]. Plant Cell, 2017, 29(10): 2465-2477.
doi: 10.1105/tpc.16.00865 URL |
[39] |
Kidokoro S, Yoneda K, Takasaki H, et al. Different cold-signaling pathways function in the responses to rapid and gradual decreases in temperature[J]. Plant Cell, 2017, 29(4): 760-774.
doi: 10.1105/tpc.16.00669 URL |
[40] |
Yang TB, Shad Ali G, Yang LH, et al. Calcium/calmodulin-regulated receptor-like kinase CRLK1 interacts with MEKK1 in plants[J]. Plant Signal Behav, 2010, 5(8): 991-994.
doi: 10.1074/jbc.M109.035659 pmid: 20724845 |
[41] |
Yang TB, Chaudhuri S, Yang LH, et al. A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plants[J]. J Biol Chem, 2010, 285(10): 7119-7126.
doi: 10.1074/jbc.M109.035659 pmid: 20026608 |
[42] |
Zhao CZ, Wang PC, Si T, et al. MAP kinase cascades regulate the cold response by modulating ICE1 protein stability[J]. Dev Cell, 2017, 43(5): 618-629.e5.
doi: S1534-5807(17)30783-9 pmid: 29056551 |
[43] |
Ding YL, Yang H, Wu SF, et al. CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis[J]. Sci Adv, 2022, 8(26): eabn7901.
doi: 10.1126/sciadv.abn7901 URL |
[44] |
Qi JS, Song CP, Wang BS, et al. Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack[J]. J Integr Plant Biol, 2018, 60(9): 805-826.
doi: 10.1111/jipb.12654 |
[45] |
Lee ES, Park JH, Wi SD, et al. Redox-dependent structural switch and CBF activation confer freezing tolerance in plants[J]. Nat Plants, 2021, 7(7): 914-922.
doi: 10.1038/s41477-021-00944-8 pmid: 34155371 |
[46] |
Chen K, Li GJ, Bressan RA, et al. Abscisic acid dynamics, signaling, and functions in plants[J]. J Integr Plant Biol, 2020, 62(1): 25-54.
doi: 10.1111/jipb.12899 |
[47] |
Ding YL, Lv J, Shi YT, et al. EGR2 phosphatase regulates OST1 kinase activity and freezing tolerance in Arabidopsis[J]. EMBO J, 2019, 38(1): e99819.
doi: 10.15252/embj.201899819 URL |
[48] |
Lv J, Liu JY, Ming YH, et al. Reciprocal regulation between the negative regulator PP2CG1 phosphatase and the positive regulator OST1 kinase confers cold response in Arabidopsis[J]. J Integr Plant Biol, 2021, 63(8): 1568-1587.
doi: 10.1111/jipb.v63.8 URL |
[49] |
Ding YL, Li H, Zhang XY, et al. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis[J]. Dev Cell, 2015, 32(3): 278-289.
doi: 10.1016/j.devcel.2014.12.023 URL |
[50] |
Ding YL, Jia YX, Shi YT, et al. OST1-mediated BTF3L phosphorylation positively regulates CBFs during plant cold responses[J]. EMBO J, 2018, 37(8): e98228.
doi: 10.15252/embj.201798228 URL |
[51] |
Wang X, Ding YL, Li ZY, et al. PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15[J]. Dev Cell, 2019, 51(2): 222-235.e5.
doi: S1534-5807(19)30691-4 pmid: 31543444 |
[52] |
Albanesi D, Martín M, Trajtenberg F, et al. Structural plasticity and catalysis regulation of a thermosensor histidine kinase[J]. Proc Natl Acad Sci USA, 2009, 106(38): 16185-16190.
doi: 10.1073/pnas.0906699106 pmid: 19805278 |
[53] |
Cybulski LE, Ballering J, Moussatova A, et al. Activation of the bacterial thermosensor DesK involves a serine zipper dimerization motif that is modulated by bilayer thickness[J]. Proc Natl Acad Sci U S A, 2015, 112(20): 6353-6358.
doi: 10.1073/pnas.1422446112 URL |
[54] |
Liang XX, Zhou JM. Receptor-like cytoplasmic kinases: central players in plant receptor kinase-mediated signaling[J]. Annu Rev Plant Biol, 2018, 69: 267-299.
doi: 10.1146/annurev-arplant-042817-040540 pmid: 29719165 |
[55] |
Liu ZY, Jia YX, Ding YL, et al. Plasma membrane CRPK1-mediated phosphorylation of 14-3-3 proteins induces their nuclear import to fine-tune CBF signaling during cold response[J]. Mol Cell, 2017, 66(1): 117-128.e5.
doi: S1097-2765(17)30131-4 pmid: 28344081 |
[56] |
Dong CH, Agarwal M, Zhang YY, et al. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1[J]. Proc Natl Acad Sci U S A, 2006, 103(21): 8281-8286.
doi: 10.1073/pnas.0602874103 URL |
[57] | Wang X, Zhang XY, Song CP, et al. PUB25 and PUB26 dynamically modulate ICE1 stability via differential ubiquitination during cold stress in Arabidopsis[J]. Plant Cell, 2023: koad159. |
[1] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[2] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[3] | 蒋路园, 丰美静, 杜雨晴, 邸葆, 陈段芬, 邱德有, 杨艳芳. 红豆杉低温半致死温度和低温胁迫下紫杉烷含量[J]. 生物技术通报, 2023, 39(3): 232-242. |
[4] | 邢媛, 宋健, 李俊怡, 郑婷婷, 刘思辰, 乔治军. 谷子AP基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2023, 39(11): 238-251. |
[5] | 毛可欣, 王海荣, 安淼, 刘腾飞, 王世金, 李健, 李国田. 中华猕猴桃GRAS基因家族鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 297-307. |
[6] | 尤垂淮, 谢津津, 张婷, 崔天真, 孙欣路, 臧守建, 武奕凝, 孙梦瑶, 阙友雄, 苏亚春. 钩吻脂氧合酶基因 GeLOX1 的鉴定及低温胁迫表达分析[J]. 生物技术通报, 2023, 39(11): 318-327. |
[7] | 于晓玲, 李文彬, 李智博, 阮孟斌. 木薯MeMYC2.2基因耐低温功能研究[J]. 生物技术通报, 2023, 39(1): 224-231. |
[8] | 金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因[J]. 生物技术通报, 2022, 38(4): 126-142. |
[9] | 崔洁冰, 张萌, 张莹婷, 徐进. 低温胁迫对柳杉不同无性系的影响及抗寒性评价[J]. 生物技术通报, 2022, 38(3): 31-40. |
[10] | 贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244. |
[11] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
[12] | 孔春艳, 陈永坤, 王莎莎, 郝大海, 杨宇, 龚明. 小桐子低温胁迫下microRNA实时荧光定量PCR内参的筛选与比较[J]. 生物技术通报, 2019, 35(7): 25-32. |
[13] | 张保青, 邵敏, 黄玉新, 黄杏, 宋修鹏, 陈虎, 王盛, 谭秦亮, 杨丽涛, 李杨瑞. 甘蔗抗坏血酸过氧化物酶基因ScAPX1的克隆和表达分析[J]. 生物技术通报, 2019, 35(12): 31-37. |
[14] | 刘丽丽, 朱华, 闫艳春, 王晓雯, 张蓉, 朱建亚. 鱼类低温耐受机制与功能基因研究进展[J]. 生物技术通报, 2018, 34(8): 50-57. |
[15] | 肖玉洁, 李泽明, 易鹏飞, 胡日生, 张先文, 朱列书. 转录因子参与植物低温胁迫响应调控机理的研究进展[J]. 生物技术通报, 2018, 34(12): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||