生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 1-12.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0953

• 综述与专论 •    下一篇

植物黄素单加氧酶研究进展

淦晨露1(), 游雨婷1, 谢菡萏1,2, 曾子贤1,2, 朱博1,2()   

  1. 1.四川师范大学生命科学学院,成都 610101
    2.四川师范大学 植物功能基因组及生物信息学研究中心,成都 610101
  • 收稿日期:2025-09-05 出版日期:2026-01-26 发布日期:2026-02-04
  • 通讯作者: 朱博,女,教授,研究方向 :植物功能基因组学、植物抗逆转录调控;E-mail: bozhu@sicnu.edu.cn
  • 作者简介:淦晨露,女,硕士研究生,研究方向 :植物非生物胁迫;E-mail: gancl34@163.com
  • 基金资助:
    国家重点研发计划(2023YFD1200800);四川省科技厅苗子工程重点项目(2024JDRC0068)

Research Progress in Flavin Monooxygenases in Plants

GAN Chen-lu1(), YOU Yu-ting1, XIE Han-dan1,2, ZENG Zi-xian1,2, ZHU Bo1,2()   

  1. 1.Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101
    2.Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101
  • Received:2025-09-05 Published:2026-01-26 Online:2026-02-04

摘要:

植物黄素单加氧酶(flavin monooxygenases, FMOs)是一类以黄素腺嘌呤二核苷酸(FAD)为辅因子的氧化还原酶,能够催化多种底物的氧化反应,在植物代谢调控和环境适应中发挥重要作用。植物FMOs超家族包含多个功能亚家族,其中以FMO1、YUCCAs和FMOGS-OXs最为典型,分别在免疫防御、生长素合成、次生代谢及逆境响应等核心过程中扮演关键角色。本文系统梳理了这3个亚家族的结构特征、进化分化与功能机制,并总结了其在植物生长发育和逆境胁迫中的最新研究进展。研究表明,FMOs家族普遍含有保守的FAD/NADPH结合结构域,且在进化过程中通过基因扩增实现功能多样化,同时展现出显著的功能冗余与多效性特征。尽管如此,FMOs家族的天然底物谱尚未系统解析,其基因扩张与进化的分子机制有待深入阐明。同时,其时空特异性及功能冗余性严重限制了其分子功能和应用价值的深入研究。未来,随着代谢组学、空间组学和人工智能等前沿技术的发展,FMOs功能解析与应用转化将迎来新机遇,有望为作物抗逆、提产的分子设计育种提供新的靶点。

关键词: 黄素单加氧酶, 基因家族, 功能多样性, 生长发育, 抗逆性

Abstract:

Flavin monooxygenases (FMOs) are a class of flavin adenine dinucleotide (FAD)-dependent oxidoreductases that catalyze the oxidation of diverse substrates and play vital roles in plant metabolic regulation and environmental adaptation. The plant FMOs superfamily comprises multiple functional subfamilies, among which FMO1, YUCCAs, and FMOGS-OXs are most representative, functioning in immune defense, auxin biosynthesis, secondary metabolism, and stress responses. This review summarizes the structural features, evolutionary diversification, and functional mechanisms of these three subfamilies, and highlights recent advances in their roles in plant growth, development, and stress adaptation. FMOs generally contain conserved FAD/NADPH-binding domains and have undergone gene expansion during evolution, conferring functional diversification as well as pronounced redundancy and pleiotropy. Nevertheless, the natural substrate spectrum of most FMOs remains unresolved, and the molecular mechanisms driving their gene expansion and evolutionary diversification are yet to be elucidated. Moreover, their spatiotemporal specificity together with functional redundancy severely constrains in-depth mechanistic and applied research. Considering future, the integration of metabolomics, spatial omics, and artificial intelligence is expected to open new avenues for functional characterization and translational applications of FMOs, providing promising targets for molecular design breeding aimed at enhancing crop stress tolerance and yield improvement.

Key words: FMOs, gene family, functional diversity, growth and development, stress resistance