生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 139-149.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0557

• 研究报告 • 上一篇    下一篇

紫丁香So4CL的克隆及功能分析

倪莹1(), 李雷1, 汪进萱1, 马波1, 孟昕2, 冷平生1,3, 吴静1,3(), 胡增辉1,3()   

  1. 1.北京农学院园林学院 国家林业草原古树健康与古树文化工程技术研究中心,北京 102206
    2.国家植物园,北京 100093
    3.城乡生态环境北京实验室,北京 102206
  • 收稿日期:2025-05-31 出版日期:2026-01-26 发布日期:2026-02-04
  • 通讯作者: 吴静,女,博士,副教授,研究方向 :园林植物与观赏园艺;E-mail: wjmxy1988@126.com
    胡增辉,男,博士,教授,研究方向 :植物生理生态;E-mail: buahuzenghui@163.com
  • 作者简介:倪莹,女,硕士研究生,研究方向 :园林植物与观赏园艺;E-mail: 18810602920@163.com
  • 基金资助:
    国家自然科学基金项目(32572134);北京市乡村景观规划设计工程技术研究中心开放课题(KFKT-2025002);都市农林学交叉学科,北京市教委生态修复工程学高精尖学科建设项目(GJJXK210102)

Cloning and Functional Analysis of So4CL Gene in Syringa oblata

NI Ying1(), LI Lei1, WANG Jin-xuan1, MA Bo1, MENG Xin2, LENG Ping-sheng1,3, WU Jing1,3(), HU Zeng-hui1,3()   

  1. 1.Ancient Tree Health and Culture Engineering Technology Research Center, National Forestry and Grassland Administration, College of Landscape Architecture, Beijing University of Agriculture, Beijing 102206
    2.National Botanical Garden, Beijing 100093
    3.Beijing Laboratory for Urban and Rural Ecological Environment, Beijing 102206
  • Received:2025-05-31 Published:2026-01-26 Online:2026-02-04

摘要:

目的 4-香豆酸∶辅酶A连接酶(4-coumarate: CoA lig-ase, 4CL)是苯丙烷代谢途径中的核心酶,克隆并探究4CL基因在紫丁香(Syringa oblata)花青苷合成中的功能。 方法 基于紫丁香基因组及转录组数据筛选并克隆出So4CL基因,对其编码的蛋白进行生物信息学分析和亚细胞定位;利用RT-qPCR研究So4CL在不同花期及不同组织的相对表达量;构建So4CL过表达和沉默载体,利用农杆菌侵染法分别转化紫丁香和烟草(Nicotiana benthamiana),观察其表型变化并测定花青苷含量;通过RT-qPCR检测花青苷生物合成途径中So4CL上下游基因的表达水平。 结果 So4CL基因CDS区全长为1 659 bp,编码552个氨基酸,具有BOX I和BOX Ⅱ保守结构域。系统进化分析显示,紫丁香So4CL与水曲柳(Fraxinus mandshurica)的4CL蛋白相似性最高,为97%。RT-qPCR分析结果显示,随着花发育,紫丁香花瓣褪色,So4CL的表达整体呈降低的趋势;So4CL在盛花期中的根、茎、叶、花中均有表达。亚细胞定位分析显示,So4CL主要存在于细胞质上。过表达So4CL的紫丁香花瓣着色明显,花青苷含量显著升高,烟草叶片出现砖红色变化;沉默So4CL后花瓣显著褪色,花青苷含量显著降低;RT-qPCR分析表明,瞬时转化So4CL会影响花青苷生物合成途径中SoPALSoCHSSoDFRSoUFGT的表达。 结论 So4CL在紫丁香花瓣花青苷合成中发挥着重要作用,是合成关键基因。

关键词: 紫丁香, 4-香豆酸:辅酶A连接酶, 花青苷, 基因克隆, 功能验证, 基因表达

Abstract:

Objective 4-coumarate∶CoA ligase (4CL) is a core enzyme of the phenylpropane metabolic pathway, and the function and expression characteristics of 4CL gene in Syringa oblata were investigated. Method Based on the genomic and transcriptomic data of S. oblata, the So4CL gene was screened and cloned. Bioinformatics analysis and subcellular localization were performed on its encoded protein. The relative expressions of So4CL in different flowering stages and tissues were investigated using RT-qPCR. The overexpressing and silencing vectors of So4CL were constructed and transformed into S. oblata and Nicotiana benthamian via Agrobacterium-mediated infection, followed by observation of phenotypic changes and measurement of anthocyanin content; and the expressions of the structural genes upstream and downstream of the anthocyanin biosynthesis pathway were determined by RT-qPCR. Result The CDS region of the So4CL gene was 1 659 bp in full length, encoding 552 amino acids with conserved structural domains BOXI and BOXII. Systematic evolutionary analysis revealed that So4CL had the highest 97% similarity to the 4CL protein of Fraxinus mandshurica. RT-qPCR analysis showed that the expression of the So4CL tended to decrease and then increase as the petals of lilac fading with flower development. So4CL was expressed in the roots, stems, leaves, and flowers in flowering stage. Subcellular localization analysis showed that So4CL was mainly present in the cytoplasm. The petals color of S. oblata got obviously darker after overexpressing So4CL, and the anthocyanin contents were significantly elevated. The N. benthamian leaves also showed brick-red changes. While petals were significantly discolored and anthocyanin contents significantly reduced after silencing So4CL. RT-qPCR analysis showed that transient transformation of So4CL affected the expressions of SoPAL, SoCHS, SoDFR, and SoUFGT in the anthocyanin biosynthesis pathway. Conclusion So4CL plays an important role in anthocyanin synthesis in S. oblata petals and is a key gene in this process.

Key words: Syringa oblata, 4-coumarate: CoA ligase, anthocyanin, gene cloning, function verification, gene expression