生物技术通报 ›› 2025, Vol. 41 ›› Issue (7): 106-116.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1077
韩燚1(
), 侯昌林1, 唐露1, 孙璐1, 谢晓东1, 梁晨2(
), 陈小强1(
)
收稿日期:2024-11-06
出版日期:2025-07-26
发布日期:2025-07-22
通讯作者:
梁晨,女,农艺师,研究方向 :作物遗传改良及成果转化评价;E-mail: 2008lc22@163.com作者简介:韩燚,男,研究方向 :作物遗传育种;E-mail: gym604666@163.com基金资助:
HAN Yi1(
), HOU Chang-lin1, TANG Lu1, SUN Lu1, XIE Xiao-dong1, LIANG Chen2(
), CHEN Xiao-qiang1(
)
Received:2024-11-06
Published:2025-07-26
Online:2025-07-22
摘要:
目的 跨膜蛋白ERECTA是富含亮氨酸受体样丝氨酸/苏氨酸的蛋白激酶(LRR-RLK),该基因控制细胞增殖生长、调节气孔结构并对各种胁迫作出反应。解析大麦HvERECTA的结构以及功能表达,为其生物学功能鉴定及作物分子育种奠定基础。 方法 以大麦Morex为材料,克隆大麦HvERECTA,并对其进行生物信息学和基因功能分析。通过RT-qPCR分析大麦HvERECTA在不同器官中和不同逆境下的功能特性,研究模拟干旱胁迫下大麦HvERECTA与大麦气孔发育相关的典型bHLH转录因子表达基因HvSPCH、HvMUTE和HvFAMA的表达模式。 结果 大麦HvERECTA开放阅读框长2 934 bp,编码977个氨基酸,具有典型的LRR-RLK结构,预测定位在质膜上且含信号肽。系统进化树表明,其属于禾本科的ERECTA亚家族,蛋白互作预测其属于调控气孔发育的关键基因,预测启动子区域内含多个与生长发育及激素调节相关的顺式调控元件。RT-qPCR结果显示,在不同器官中,大麦HvERECTA在时空上呈现出特异性表达特征,其在早期叶片中表达量最高而在根部最低;在ABA、高温、低温、模拟干旱(20% PEG6000)非生物胁迫下,HvERECTA的表达量差异显著;模拟干旱胁迫下,HvERECTA与HvSPCH的表达量表现出相似趋势,与HvMUTE表达量则呈相反趋势。 结论 克隆获得大麦HvERECTA,它是调控气孔发育的关键基因,在大麦早期叶片中特异性表达,参与ABA信号转导途径,响应高温、低温和干旱等非生物胁迫。
韩燚, 侯昌林, 唐露, 孙璐, 谢晓东, 梁晨, 陈小强. 大麦HvERECTA基因的克隆及功能分析[J]. 生物技术通报, 2025, 41(7): 106-116.
HAN Yi, HOU Chang-lin, TANG Lu, SUN Lu, XIE Xiao-dong, LIANG Chen, CHEN Xiao-qiang. Cloning and Preliminary Functional Analysis of HvERECTA Gene in Hordeum vulgare[J]. Biotechnology Bulletin, 2025, 41(7): 106-116.
| 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | Tm (℃) | 用途 Purpose |
|---|---|---|---|
| HvERECTA-F | ACGGTGACTCTCCGCAGC | 58.8 | 基因扩增 Gene amplification |
| HvERECTA-R | CGACTACCCGAATCATCCTCC | 60.9 | |
| qHvERECTA-F | TGGCATTGCTAAGAGTTTGTGT | 57.9 | RT-qPCR |
| qHvERECTA-R | GATTGCACTCGTTGTCCACG | 59.4 | |
| qHvSPCH-F | CCGAAGACTTATTCAGCATCC | 56.7 | |
| qHvSPCH-R | CTCATGCGATATTCCGTCAC | 54.7 | |
| qHvMUTE-F | TCCTTCGTCCTCAAGATTGG | 57.4 | |
| qHvMUTE-R | ATATCGCCATGGATGAGTAGTC | 56.1 | |
| qFAMA-F | TGGCGGAGAACAAGTCGAG | 59.2 | |
| qFAMA-R | GTGTGGAGGATGGACATGTG | 55.8 | |
| Actin-F | TGGATCGGAGGGTCCATCCT | 63.5 |
表1 本研究所用引物以及用途
Table 1 Primers used in this study and their uses
| 引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | Tm (℃) | 用途 Purpose |
|---|---|---|---|
| HvERECTA-F | ACGGTGACTCTCCGCAGC | 58.8 | 基因扩增 Gene amplification |
| HvERECTA-R | CGACTACCCGAATCATCCTCC | 60.9 | |
| qHvERECTA-F | TGGCATTGCTAAGAGTTTGTGT | 57.9 | RT-qPCR |
| qHvERECTA-R | GATTGCACTCGTTGTCCACG | 59.4 | |
| qHvSPCH-F | CCGAAGACTTATTCAGCATCC | 56.7 | |
| qHvSPCH-R | CTCATGCGATATTCCGTCAC | 54.7 | |
| qHvMUTE-F | TCCTTCGTCCTCAAGATTGG | 57.4 | |
| qHvMUTE-R | ATATCGCCATGGATGAGTAGTC | 56.1 | |
| qFAMA-F | TGGCGGAGAACAAGTCGAG | 59.2 | |
| qFAMA-R | GTGTGGAGGATGGACATGTG | 55.8 | |
| Actin-F | TGGATCGGAGGGTCCATCCT | 63.5 |
图3 HvERECTA保守结构域分析A:多重序列比对(黑色虚线为STK_BAK1_like,红色框为ATP结合位点;Hv:大麦;Ta:小麦;Bd:二穗短柄草;Sb:高粱;Zm:玉米;Qs:亚洲稻;Gm:大豆;At:拟南芥);B:保守结构域分析;C:保守基序预测
Fig. 3 Conservative structure analysis of HvERECTAA: Multiple sequence alignment (STK_BAK1_like by black dashed line, ATP binding site by red box. Hv: Hordeum vulgare; Ta: Triticum aestivum; Bd: Brachypodium distachyon; Sb: Sorghum bicolo; Zm: Zea mays; Qs: Oryza sativa Japonica Group; Gm: Glycine max; At: Arabidopsis thaliana). B: Analysis of conservative domain. C: Prediction of conservative base sequence
图5 HvERECTA蛋白互作预测线条颜色表示交互证据的类型,线条的数量表示数据支持的强度
Fig. 5 Prediction of protein interactions of HvERECTALine colors indicate the type of interactive evidence and the number of lines indicates the strength of data support
图6 HvERECTA及其他同源家族基因ERfs的系统发育树蓝色扇形为ERECTA,红色扇形为ERL,红色分支为禾本科植物,蓝色分支为双子叶植物
Fig. 6 Phylogenetic tree of HvERECTA and other homologous gene ERfsThe blue sector is ERECTA, the red sector is ERL, the red branch is grasses, and the blue branch is dicotyledonous
图8 大麦不同器官HvERECTA的相对表达量C:胚芽鞘;2L:2 d龄叶;4L:4 d龄叶;6L:6 d龄叶;8L:8 d龄叶;S:茎;R:根。小写字母表示显著差异(P<0.05)
Fig. 8 Relative expressions of HvERECTA in different organs of barleyC: Coleoptile; 2L: 2 d leaf age; 4L: 4 d leaf age; 6L: 6 d leaf age; 8L: 8 d leaf age; S: stem; R: root. Lowercase letters for significant differences (P<0.05)
图9 ABA处理和高温、低温胁迫下大麦HvERECTA的表达量A:高温处理;B:低温处理;C:ABA处理。*表示处理组和对照之间基因表达量差异达显著水平(0.01≤P<0.05),**表示处理组和对照之间基因表达量差异达较显著水平(0.001≤P<0.01),***表示处理组和对照之间基因表达量差异达极显著水平(P<0.001)。ns表示处理组和对照之间基因表达量差异无显著水平(P>0.05)。下同
Fig. 9 Expressions of HvERECTA gene in barley treated with ABA and under high temperature, low temperatureA: High temperature treatment. B: Low temperature treatment. C: ABA treatment.* indicates significant difference in gene expression between treatment group and control group (0.01≤P<0.05), ** indicating that the difference in gene expression between the treatment group and the control group was significant (0.001≤P<0.01), *** indicating that the difference in gene expression between the treatment and control groups was extremely significant (P<0.001).nsindicates no significant difference in gene expression between treatment group and control group (P>0.05). The same below
| [1] | Shirvani H, Mehrabi AA, Farshadfar M, et al. Investigation of the morphological, physiological, biochemical, and catabolic characteristics and gene expression under drought stress in tolerant and sensitive genotypes of wild barley [Hordeum vulgare subsp. spontaneum (K. Koch) Asch. & Graebn. [J]. BMC Plant Biol, 2024, 24(1): 214. |
| [2] | 赵盟, 王春超, 张仁旭, 等. 中国大麦育成品种产量相关性状鉴定评价 [J]. 植物遗传资源学报, 2022, 23(5): 1371-1382. |
| Zhao M, Wang CC, Zhang RX, et al. Evaluation of the yield-related traits of Chinese barley cultivars [J]. J Plant Genet Resour, 2022, 23(5): 1371-1382. | |
| [3] | 阿丽亚古丽·艾合买提. 玉米ZmNAC3基因的克隆及生物学功能的初步研究 [D]. 曲阜: 曲阜师范大学, 2024. |
| Aliaguri A. Cloning and preliminary study on biological function of maize ZmNAC3 gene [D]. Qufu: Qufu Normal University, 2024. | |
| [4] | Zhang CJ, Ren YY, Cao LJ, et al. Characteristics of dry-wet climate change in China during the past 60 years and its trends projection [J]. Atmosphere, 2022, 13(2): 275. |
| [5] | Doll Y, Koga H, Tsukaya H. Experimental validation of the mechanism of stomatal development diversification [J]. J Exp Bot, 2023, 74(18): 5667-5681. |
| [6] | Berchembrock YV, Botelho FBS, Srivastava V. Suppression of ERECTA signaling impacts agronomic performance of soybean (Glycine max (L) merril) in the greenhouse [J]. Front Plant Sci, 2021, 12: 667825. |
| [7] | Masle J, Gilmore SR, Farquhar GD. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis [J]. Nature, 2005, 436(7052): 866-870. |
| [8] | 张玉涵. 水稻ERECTA基因家族的进化分析及功能鉴定 [D]. 南京: 南京大学, 2018. |
| Zhang YH. Evolutionary analysis and functional identification of rice ERECTA gene family [D]. Nanjing: Nanjing University, 2018. | |
| [9] | 赵雪雅, 张坤鹏, 张汇东, 等. ERECTA基因家族调控植物形态发育机制研究进展 [J]. 沈阳农业大学学报, 2023, 54(2): 231-238. |
| Zhao XY, Zhang KP, Zhang HD, et al. Research progress on the mechanism of ERECTA gene family regulating plant morphological development [J]. J Shenyang Agric Univ, 2023, 54(2): 231-238. | |
| [10] | Shpak ED, Lakeman MB, Torii KU. Dominant-negative receptor uncovers redundancy in the Arabidopsis ERECTA Leucine-rich repeat receptor-like kinase signaling pathway that regulates organ shape [J]. Plant Cell, 2003, 15(5): 1095-1110. |
| [11] | Shpak ED, Berthiaume CT, Hill EJ, et al. Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation [J]. Development, 2004, 131(7): 1491-1501. |
| [12] | Lee JS, Kuroha T, Hnilova M, et al. Direct interaction of ligand-receptor pairs specifying stomatal patterning [J]. Genes Dev, 2012, 26(2): 126-136. |
| [13] | 陈春林, 李白雪, 李金玲, 等. 甜瓜CmEPF基因家族的鉴定及表达分析 [J]. 生物技术通报, 2024, 40(4): 130-138. |
| Chen CL, Li BX, Li JL, et al. Identification and expression analysis of epidermal patterning factor (EPF) genes in Cucumis melo [J]. Biotechnol Bull, 2024, 40(4): 130-138. | |
| [14] | Jewaria PK, Hara T, Tanaka H, et al. Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level [J]. Plant Cell Physiol, 2013, 54(8): 1253-1262. |
| [15] | MacAlister CA, Ohashi-Ito K, Bergmann DC. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage [J]. Nature, 2007, 445(7127): 537-540. |
| [16] | Qi XY, Han SK, Dang JH, et al. Autocrine regulation of stomatal differentiation potential by EPF1 and ERECTA-LIKE1 ligand-receptor signaling [J]. eLife, 2017, 6: e24102. |
| [17] | Pillitteri LJ, Bemis SM, Shpak ED, et al. Haploinsufficiency after successive loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule development [J]. Development, 2007, 134(17): 3099-3109. |
| [18] | 刘梦龙, 魏健, 任姿蓉, 等. 气孔研究进展: 从保卫细胞到光合作用 [J]. 生命科学, 2024, 36(10): 1289-1304. |
| Liu ML, Wei J, Ren ZR, et al. Research progress of stomata: from guard cells to photosynthesis [J]. Chin Bull Life Sci, 2024, 36(10): 1289-1304. | |
| [19] | 侯笑颜, 孙美红, 张恒, 等. 植物ERECTA基因家族特征及其非生物胁迫功能 [J]. 上海师范大学学报: 自然科学版, 2020, 49(6): 719-730. |
| Hou XY, Sun MH, Zhang H, et al. Research advances of ERECTA gene family and its functions in abiotic stress response in plants [J]. J Shanghai Norm Univ Nat Sci, 2020, 49(6): 719-730. | |
| [20] | Li HG, Yang YL, Wang HL, et al. The receptor-like kinase ERECTA confers improved water use efficiency and drought tolerance to poplar via modulating stomatal density [J]. Int J Mol Sci, 2021, 22(14): 7245. |
| [21] | Juneidi S, Gao ZY, Yin HR, et al. Breaking the summer dormancy of Pinellia ternata by introducing a heat tolerance receptor-like kinase ERECTA gene [J]. Front Plant Sci, 2020, 11: 780. |
| [22] | 次尔甲玛, 王宏鹏, 苟筱颖, 等. 大麦气孔发育相关基因HvSPCH的克隆及初步功能分析 [J]. 麦类作物学报, 2022, 42(10): 1175-1181. |
| Ci E, Wang HP, Gou XY, et al. Cloning and functional analysis of stomatal development related gene HvSPCH in barley [J]. J Triticeae Crops, 2022, 42(10): 1175-1181. | |
| [23] | 王宏鹏, 曹高燚, 李明, 等. 大麦气孔发育转录因子基因HvMUTE的克隆及生物学功能初步鉴定 [J]. 华北农学报, 2023, 38(1): 40-45. |
| Wang HP, Cao GY, Li M, et al. Gene cloning and preliminary function identification of HvMUTE transcription factor for barley stomatal development [J]. Acta Agric Boreali Sin, 2023, 38(1): 40-45. | |
| [24] | 孙璐, 蔡浩宇, 李明, 等. 大麦气孔发育相关基因HvFAMA的克隆及功能初步分析 [J]. 麦类作物学报, 2024, 44(11): 1397-1403. |
| Sun L, Cai HY, Li M, et al. Cloning and preliminary functional analysis of HvFAMA gene related to stomatal development in Hordeum vulgare [J]. J Triticeae Crops, 2024, 44(11): 1397-1403. | |
| [25] | Gou XP, He K, Yang H, et al. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana [J]. BMC Genomics, 2010, 11: 19. |
| [26] | Kosentka PZ, Zhang L, Simon YA, et al. Identification of critical functional residues of receptor-like kinase ERECTA [J]. J Exp Bot, 2017, 68(7): 1507-1518. |
| [27] | Gish LA, Clark SE. The RLK/Pelle family of kinases [J]. Plant J, 2011, 66(1): 117-127. |
| [28] | Chen LL, Cochran AM, Waite JM, et al. Direct attenuation of Arabidopsis ERECTA signalling by a pair of U-box E3 ligases [J]. Nat Plants, 2023, 9(1): 112-127. |
| [29] | 刘敏. 葡萄幼苗高温响应机理的研究及ERECTA基因家族的表达和功能分析 [D]. 杨凌: 西北农林科技大学, 2018. |
| Liu M. Study on the mechanism of high temperature response of grape seedlings and the expression and function analysis of ERECTA gene family [D]. Yangling: Northwest A & F University, 2018. | |
| [30] | 李昕雨, 王泽博, 邱颖胜, 等. 植物启动子响应非生物逆境胁迫研究进展 [J]. 种子科技, 2022, 40(3): 16-18. |
| Li XY, Wang ZB, Qiu YS, et al. Research progress of plant promoters responding to abiotic stress [J]. Seed Sci Technol, 2022, 40(3): 16-18. | |
| [31] | Koua AP, Oyiga BC, Baig MM, et al. Breeding driven enrichment of genetic variation for key yield components and grain starch content under drought stress in winter wheat [J]. Front Plant Sci, 2021, 12: 684205. |
| [32] | Zhang MM, Zhang SQ. Stomatal development: NRPM proteins in dynamic localization of ERECTA receptor [J]. Curr Biol, 2024, 34(4): R143-R146. |
| [33] | 刘敏, 房玉林. 葡萄ERECTA基因过表达提高拟南芥生长量和耐热性 [J]. 生物技术通报, 2020, 36(6): 46-53. |
| Liu M, Fang YL. Overexpression of grape ERECTA enhances growth and thermo-tolerance of Arabidopsis [J]. Biotechnol Bull, 2020, 36(6): 46-53. | |
| [34] | Hughes J, Hepworth C, Dutton C, et al. Reducing stomatal density in barley improves drought tolerance without impacting on yield [J]. Plant Physiol, 2017, 174(2): 776-787. |
| [35] | Ohashi-Ito K, Bergmann DC. Arabidopsis FAMA controls the final proliferation/differentiation switch during stomatal development [J]. Plant Cell, 2006, 18(10): 2493-2505. |
| [36] | McKown KH, Ximena Anleu Gil M, Mair A, et al. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development [J]. Plant Cell, 2023, 35(2): 756-775. |
| [37] | Ortega A, de Marcos A, Illescas-Miranda J, et al. The tomato genome encodes SPCH, MUTE, and FAMA candidates that can replace the endogenous functions of their Arabidopsis orthologs [J]. Front Plant Sci, 2019, 10: 1300. |
| [1] | 张学琼, 潘素君, 李魏, 戴良英. 植物磷酸盐转运蛋白在胁迫响应中的研究进展[J]. 生物技术通报, 2025, 41(7): 28-36. |
| [2] | 李霞, 张泽伟, 刘泽军, 王楠, 郭江波, 辛翠花, 张彤, 简磊. 马铃薯转录因子StMYB96的克隆及功能研究[J]. 生物技术通报, 2025, 41(7): 181-192. |
| [3] | 龚钰涵, 陈兰, 尚方慧子, 郝灵颖, 刘硕谦. 茶树TRB基因家族鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(7): 214-225. |
| [4] | 魏雨佳, 李岩, 康语涵, 弓晓楠, 杜敏, 涂岚, 石鹏, 于子涵, 孙彦, 张昆. 白颖苔草CrMYB4基因的克隆和表达分析[J]. 生物技术通报, 2025, 41(7): 248-260. |
| [5] | 吴浩, 董伟峰, 贺子天, 李艳肖, 谢辉, 孙明哲, 沈阳, 孙晓丽. 水稻BXL基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(6): 87-98. |
| [6] | 黄丹, 彭兵阳, 张盼盼, 焦悦, 吕佳斌. 油茶HD-Zip基因家族鉴定及其在非生物胁迫下的表达分析[J]. 生物技术通报, 2025, 41(6): 191-207. |
| [7] | 彭绍智, 王登科, 张祥, 戴雄泽, 徐昊, 邹学校. 辣椒CaFD1基因克隆、表达特征及功能验证[J]. 生物技术通报, 2025, 41(5): 153-164. |
| [8] | 刘源, 赵冉, 卢振芳, 李瑞丽. 植物类胡萝卜素生物代谢途径及其功能研究进展[J]. 生物技术通报, 2025, 41(5): 23-31. |
| [9] | 张益瑄, 马宇, 王童童, 盛苏奥, 宋家凤, 吕钊彦, 朱晓彪, 侯华兰. 马铃薯DIR家族全基因组鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(3): 123-136. |
| [10] | 韩江涛, 张帅博, 秦雅蕊, 韩硕洋, 张雅康, 王吉庆, 杜清洁, 肖怀娟, 李猛. 甜瓜β-淀粉酶基因家族的鉴定及对非生物胁迫的响应[J]. 生物技术通报, 2025, 41(3): 171-180. |
| [11] | 薛瑞莹, 刘永菊, 姜燕燕, 彭欣雅, 曹东, 李云, 刘宝龙, 包雪梅. 5′UTR区的编辑降低大麦GBSSI基因表达[J]. 生物技术通报, 2025, 41(3): 83-89. |
| [12] | 匡健华, 程志鹏, 赵永晶, 杨洁, 陈润乔, 陈龙清, 胡慧贞. 激素和非生物胁迫下荷花GH3基因家族的表达分析[J]. 生物技术通报, 2025, 41(2): 221-233. |
| [13] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
| [14] | 殷缘, 程爽, 刘定豪, 邓晓霞, 李凯月, 王竞红, 蔺吉祥. 外源过氧化氢(H2O2)影响非生物胁迫下植物生长与生理代谢机制的研究进展[J]. 生物技术通报, 2025, 41(1): 1-13. |
| [15] | 武志健, 刘广洋, 林志豪, 盛彬, 陈鸽, 许晓敏, 王军伟, 徐东辉. 蔬菜种子萌发的纳米调控及其机制研究进展[J]. 生物技术通报, 2025, 41(1): 14-24. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||