生物技术通报 ›› 2026, Vol. 42 ›› Issue (1): 230-240.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0546

• 研究报告 • 上一篇    下一篇

Ata4CL基因在紫菀黄酮合成与抗旱性功能研究

王婷1(), 孟义江2, 王晗1, 贾凯旋1, 乔晓宇1, 韩冰冰1, 刘晓清1, 葛淑俊1()   

  1. 1.河北农业大学农学院 教育部华北作物种质资源研究与利用重点实验室,保定 071001
    2.河北农业大学生命科学学院,保定 071001
  • 收稿日期:2025-05-27 出版日期:2026-01-26 发布日期:2026-02-04
  • 通讯作者: 葛淑俊,女,教授,研究方向 :药用植物遗传育种;E-mail: gshj@hebau.edu.cn
  • 作者简介:王婷,女,硕士研究生,研究方向 :作物遗传资源研究与利用;E-mail: 13938172162@qq.com
  • 基金资助:
    河北省重点研发计划,中药材现代种业科技创新团队(21326312D-1);现代农业产业技术专项资金(CARS-21)

Study on the Function of Ata4CL Gene in Flavonoid Synthesis and Drought Resistance in Aster tataricus

WANG Ting1(), MENG Yi-jiang2, WANG Han1, JIA Kai-xuan1, QIAO Xiao-yu1, HAN Bing-bing1, LIU Xiao-qing1, GE Shu-jun1()   

  1. 1.College of Agronomy, Hebei Agricultural University/Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding 071001
    2.College of Life Sciences, Hebei Agricultural University, Baoding 071001
  • Received:2025-05-27 Published:2026-01-26 Online:2026-02-04

摘要:

目的 紫菀(Aster tataricus L.)作为止咳润肺药材,黄酮类化合物是其主要活性成分,4-香豆酸辅酶A连接酶(4CL)为黄酮合成的关键限速酶,解析Ata4CL分子特征及在黄酮合成与抗旱中的双重功能,为紫菀药用成分优化及抗逆育种提供理论依据。 方法 硝酸铝比色法测定紫菀不同组织和生长阶段的总黄酮含量,克隆Ata4CL基因全长,结合生物信息学工具分析其结构特征,利用农杆菌介导转化烟草进行亚细胞定位,构建35S∶∶Ata4CL-6HA过表达载体并转化拟南芥,经干旱胁迫处理验证其功能。 结果 紫菀根部总黄酮呈双峰积累,为黄酮积累的主要部位,进入开花期的植株叶片和根茎中含量最高。克隆获得Ata4CL基因全长1 623 bp,编码540个氨基酸,分子量为59.04 kD,编码蛋白以无规则卷曲为主,含AAE保守结构域,定位于叶绿体;其氨基酸序列在菊科植物中高度保守,与小蓬草同源性高达96.48%;该基因在根部和叶片的表达量均呈“上升-下降-上升”的趋势,在开花植株中根部表达最强,盛花期的花中表达量最高。过表达Ata4CL的拟南芥总黄酮含量较野生型提高1.47-1.76倍,基因表达量上调5.41-12.23倍,同时在黄酮通路上下游合成基因表达量均上调;干旱胁迫下,转基因拟南芥比野生型存活率提高76.67%-86.67%,株高、根长及莲座直径均显著增加,SOD和POD活性增强,MDA含量降低。 结论 Ata4CL基因通过协同调控黄酮生物合成从而提高植物抗旱性,为紫菀药用成分优化及抗逆品种选育提供了关键分子靶点。

关键词: 紫菀, Ata4CL基因, 黄酮合成, 抗旱性

Abstract:

Objective As a cough-suppressing and lung-moistening medicinal herb, Aster tataricus L. contains flavonoid compounds as its main active components. 4-coumarate: CoA ligase (4CL) is the key rate-limiting enzyme for flavonoid synthesis. This study is aimed to explore the molecular characteristics of Ata4CL and its dual role in flavonoid synthesis and drought resistance, offering a theoretical basis for enhancing medicinal components of A. tataricus and breeding drought-resistant varieties. Method Total flavonoid content in different A. tataricus tissues and growth stages was measured by the aluminum nitrate colorimetric method. The full-length Ata4CL gene was cloned and its structural features analyzed using bioinformatics tools. Agrobacterium-mediated transformation was used for subcellular localization. A 35S::Ata4CL-6HA overexpression vector was constructed and transformed into Arabidopsis thaliana. Drought-stress experiments were carried out to verify its function. Result The total flavonoids in the roots of A. tataricus show a bimodal accumulation pattern, with the root being the main site for flavonoid accumulation. The highest flavonoid contents in the leaves and rhizomes are observed in plants entering the flowering stage. The full-length cDNA of the Ata4CL gene was cloned, which is 1 623 bp in length and encodes a protein of 540 amino acids with a molecular weight of 59.04 kD. The encoded protein is mainly composed of random coils, contains a conserved AAE domain, and is localized in chloroplasts. Its amino acid sequence is highly conserved among A. tataricus plants, with a homology of up to 96.48% with Conyza canadensis. The expressions of this gene in the roots and leaves both show an "increase-decrease-increase" trend, with the strongest expression in the roots of flowering plants and the highest expression in the flowers at the full flowering stage. The total flavonoid content in A. tataricus overexpressing Ata4CL is 1.47-1.76 times higher than that in wild-type plants, and the gene expression is up-regulated by 5.41-12.23 times. Meanwhile, the expressions of both upstream and downstream synthesis genes in the flavonoid pathway are up-regulated. Under drought stress, the survival rate of transgenic Arabidopsis is 76.67%-86.67% higher than that of wild-type plants, with significantly increased plant height, root length, and rosette diameter, enhanced SOD and POD activities, and decreased MDA content. Conclusion The Ata4CL gene enhances resistance in plants to drought by coordinately regulating flavonoid biosynthesis, thereby providing a key molecular target for the optimization of medicinal components in A. tataricus and the breeding of stress-resistant varieties.

Key words: Aster tataricus, Ata4CL gene, flavonoid biosynthesis, resistance to drought