生物技术通报 ›› 2023, Vol. 39 ›› Issue (12): 219-228.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0818
罗艳菊(), 谢林艳, 邹清林, 李四杰, 刘涵, 刘鲁峰, 何丽莲, 李富生()
收稿日期:
2023-08-20
出版日期:
2023-12-26
发布日期:
2024-01-11
通讯作者:
李富生,男,博士,教授,研究方向:甘蔗资源研究与利用;E-mail: Lfs810@sina.com作者简介:
罗艳菊,女,硕士研究生,研究方向:甘蔗种质资源评价与利用;E-mail: 1833912990@qq.com
基金资助:
LUO Yan-ju(), XIE Lin-yan, ZOU Qing-lin, LI Si-jie, LIU Han, LIU Lu-feng, HE Li-lian, LI Fu-sheng()
Received:
2023-08-20
Published:
2023-12-26
Online:
2024-01-11
摘要:
探究接种内生菌对干旱胁迫下甘蔗的生理响应及缓解干旱胁迫的效果,为开发利用甘蔗抗旱性功能菌株和甘蔗抗旱栽培技术的推广提供研究基础。选择体外耐旱性较强的4株甘蔗内生菌为目标菌株,盆栽试验设2个土壤含水量,分别为正常浇水(CK:土壤含水量25%-30%)和中度干旱胁迫(土壤含水量10%-12.5%),并分别设接种单一内生菌和组合内生菌及不接种内生菌的处理,共8个处理。测定甘蔗苗期的生理生化指标,并对各处理进行抗旱性综合评价。结果表明,与CK相比,干旱胁迫促进甘蔗植株脯氨酸(proline, Pro)、可溶性蛋白(soluble protein, SP)、可溶性糖(soluble sugar, SS)、丙二醛(malondialdehyde, MDA)的积累,超氧化物歧化酶(superoxide dismutase, SOD)、过氧化物酶(peroxidase, POD)活性的升高;并降低了叶片相对含水量(leaf relative water content, RWC)、离体失水率(water loss rate in vitro, RWL)和叶绿素(chlorophyll, ChI)的含量。干旱胁迫下,与未接种内生菌的处理相比,接种内生菌能有效的缓解干旱胁迫,其中,ZM菌株单独接种处理(ZD)的抗旱性综合评价值D值最高,且通过灰色关联性分析可知SOD、ChI、RWC、Pro与各处理的D值密切相关。ZM菌株接种缓解甘蔗苗期干旱胁迫的效果最佳,且通过增加ChI、RWC、Pro等含量和SOD酶活性来提高甘蔗苗期的抗旱性。
罗艳菊, 谢林艳, 邹清林, 李四杰, 刘涵, 刘鲁峰, 何丽莲, 李富生. 内生菌对干旱胁迫下甘蔗的生理响应及抗旱性评价[J]. 生物技术通报, 2023, 39(12): 219-228.
LUO Yan-ju, XIE Lin-yan, ZOU Qing-lin, LI Si-jie, LIU Han, LIU Lu-feng, HE Li-lian, LI Fu-sheng. Physiological Response and Drought Resistance Evaluation of Endophytic Bacteria to Sugarcane Under Drought Stress[J]. Biotechnology Bulletin, 2023, 39(12): 219-228.
图1 干旱和复水对各处理甘蔗苗期叶片相对含水量和离体失水率的影响 图中不同小写字母表示各处理间差异显著(P<0.05)。下同
Fig. 1 Effects of drought and rehydration on the relative water contents and in vitro water loss of sugarcane leaves at seedling stage Different lowercase letters in the figure indicate significant differences between treatments(P<0.05). The same below
图2 干旱和复水对各处理甘蔗苗期叶片Pro、SS、SP和MDA的影响
Fig. 2 Effects of drought and rehydration on the Pro, SS, SP and MDA contents of sugarcane leaves at seedling stage
处理 Treatment | 胁迫后叶绿素总含量Total chlorophyll content after stress | 复水后叶绿素总含量 Total chlorophyll content after rehydration | 胁迫后叶绿素a/b Chlorophyll a/b after stress | 复水后叶绿素a/b Chlorophyll a/b after rehydration |
---|---|---|---|---|
CK | 2.164±0.154b | 1.902±0.045bc | 2.575±0.325b | 3.938±0.183abc |
WD | 1.517±0.006d | 1.575±0.117e | 2.482±0.055b | 3.032±1.377c |
K5 | 1.946±0.218c | 2.156±0.105a | 2.5572±0.290b | 4.691±0.656ab |
ZD | 2.385±0.090a | 1.847±0.049cd | 2.850±0.285ab | 3.699±0.166bc |
DD | 2.156±0.148b | 1.994±0.096b | 3.057±0.300a | 5.259±2.098a |
YD | 1.582±0.115d | 2.264±0.159a | 3.079±0.087a | 4.837±1.789ab |
TD | 1.625±0.066d | 1.723±0.136d | 2.566±0.771b | 3.174±0.452c |
FD | 1.586±0.098d | 1.718±0.122d | 2.724±0.404ab | 3.970±0.281abc |
表1 干旱和复水对各处理甘蔗苗期叶绿素的影响
Table 1 Effects of drought and rehydration on chlorophyll at seedling stage of sugarcane (mg·g-1)
处理 Treatment | 胁迫后叶绿素总含量Total chlorophyll content after stress | 复水后叶绿素总含量 Total chlorophyll content after rehydration | 胁迫后叶绿素a/b Chlorophyll a/b after stress | 复水后叶绿素a/b Chlorophyll a/b after rehydration |
---|---|---|---|---|
CK | 2.164±0.154b | 1.902±0.045bc | 2.575±0.325b | 3.938±0.183abc |
WD | 1.517±0.006d | 1.575±0.117e | 2.482±0.055b | 3.032±1.377c |
K5 | 1.946±0.218c | 2.156±0.105a | 2.5572±0.290b | 4.691±0.656ab |
ZD | 2.385±0.090a | 1.847±0.049cd | 2.850±0.285ab | 3.699±0.166bc |
DD | 2.156±0.148b | 1.994±0.096b | 3.057±0.300a | 5.259±2.098a |
YD | 1.582±0.115d | 2.264±0.159a | 3.079±0.087a | 4.837±1.789ab |
TD | 1.625±0.066d | 1.723±0.136d | 2.566±0.771b | 3.174±0.452c |
FD | 1.586±0.098d | 1.718±0.122d | 2.724±0.404ab | 3.970±0.281abc |
处理 Treatment | RWC | RWL | MDA | Pro | SS | SP | POD | SOD | ChI |
---|---|---|---|---|---|---|---|---|---|
相对含水量RWC | 1.000 | ||||||||
离体失水率RWL | 0.706 | 1.000 | |||||||
丙二醛MDA | -0.837* | -0.566 | 1.000 | ||||||
脯氨酸Pro | 0.083 | -0.306 | -0.014 | 1.000 | |||||
可溶性糖 SS | 0.403 | 0.225 | -0.317 | 0.003 | 1.000 | ||||
可溶性蛋白SP | 0.835* | 0.796* | -0.721 | 0.091 | -0.082 | 1.000 | |||
过氧化物酶POD | 0.079 | -0.438 | -0.255 | 0.295 | -0.387 | 0.090 | 1.000 | ||
超氧化物歧化酶SOD | 0.655 | 0.224 | -0.476 | 0.528 | -0.238 | 0.739 | 0.475 | 1.000 | |
叶绿素ChI | 0.291 | -0.317 | -0.055 | 0.848* | 0.157 | 0.102 | 0.394 | 0.653 | 1.000 |
表2 各指标的相关性分析
Table 2 Correlation analysis of each index
处理 Treatment | RWC | RWL | MDA | Pro | SS | SP | POD | SOD | ChI |
---|---|---|---|---|---|---|---|---|---|
相对含水量RWC | 1.000 | ||||||||
离体失水率RWL | 0.706 | 1.000 | |||||||
丙二醛MDA | -0.837* | -0.566 | 1.000 | ||||||
脯氨酸Pro | 0.083 | -0.306 | -0.014 | 1.000 | |||||
可溶性糖 SS | 0.403 | 0.225 | -0.317 | 0.003 | 1.000 | ||||
可溶性蛋白SP | 0.835* | 0.796* | -0.721 | 0.091 | -0.082 | 1.000 | |||
过氧化物酶POD | 0.079 | -0.438 | -0.255 | 0.295 | -0.387 | 0.090 | 1.000 | ||
超氧化物歧化酶SOD | 0.655 | 0.224 | -0.476 | 0.528 | -0.238 | 0.739 | 0.475 | 1.000 | |
叶绿素ChI | 0.291 | -0.317 | -0.055 | 0.848* | 0.157 | 0.102 | 0.394 | 0.653 | 1.000 |
生理指标 Physiological index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
相对含水量RWC | 0.248 | -0.079 | 0.109 |
离体失水率RWL | 0.165 | -0.270 | -0.041 |
丙二醛MDA | -0.218 | 0.087 | 0.005 |
脯氨酸Pro | 0.076 | 0.293 | 0.245 |
可溶性糖SS | 0.045 | -0.124 | 0.635 |
可溶性蛋白SP | 0.239 | -0.075 | -0.202 |
过氧化物酶POD | 0.061 | 0.252 | -0.299 |
超氧化物歧化酶SOD | 0.215 | 0.175 | -0.145 |
总叶绿ChI | 0.104 | 0.297 | 0.302 |
特征值eigenvalue | 3.816 | 2.658 | 1.391 |
贡献率Contribution rate/% | 42.402 | 29.533 | 15.452 |
累积贡献率Cumulative contribution rate/% | 42.402 | 71.935 | 87.388 |
表3 综合指标系数及贡献率
Table 3 Comprehensive index coefficient and contribution rate
生理指标 Physiological index | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 |
---|---|---|---|
相对含水量RWC | 0.248 | -0.079 | 0.109 |
离体失水率RWL | 0.165 | -0.270 | -0.041 |
丙二醛MDA | -0.218 | 0.087 | 0.005 |
脯氨酸Pro | 0.076 | 0.293 | 0.245 |
可溶性糖SS | 0.045 | -0.124 | 0.635 |
可溶性蛋白SP | 0.239 | -0.075 | -0.202 |
过氧化物酶POD | 0.061 | 0.252 | -0.299 |
超氧化物歧化酶SOD | 0.215 | 0.175 | -0.145 |
总叶绿ChI | 0.104 | 0.297 | 0.302 |
特征值eigenvalue | 3.816 | 2.658 | 1.391 |
贡献率Contribution rate/% | 42.402 | 29.533 | 15.452 |
累积贡献率Cumulative contribution rate/% | 42.402 | 71.935 | 87.388 |
处理 Treatment | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | U1 | U2 | U3 | D值 D value | 抗旱性排名 Drought resistance ranking |
---|---|---|---|---|---|---|---|---|
WD | -4.293 | 0.026 | -0.328 | 0.000 | 0.428 | 0.424 | 0.220 | 7 |
KD | 0.174 | -0.258 | 1.504 | 0.761 | 0.371 | 1.000 | 0.671 | 3 |
ZD | 1.120 | 2.862 | 0.217 | 0.922 | 1.000 | 0.595 | 0.890 | 1 |
DD | 0.549 | 0.715 | 0.576 | 0.825 | 0.567 | 0.708 | 0.717 | 2 |
YD | 1.580 | -1.625 | -1.320 | 1.000 | 0.095 | 0.112 | 0.537 | 6 |
TD | 0.383 | 0.377 | -1.674 | 0.796 | 0.499 | 0.000 | 0.555 | 4 |
FD | 0.487 | -2.096 | 1.025 | 0.814 | 0.000 | 0.849 | 0.545 | 5 |
权重Weight | 0.485 | 0.338 | 0.177 |
表4 处理的综合指标值、权重、隶属函数值(Ui)、D值及综合评价
Table 4 Comprehensive index value, weight, membership function value(Ui), D value and comprehensive evaluation of each processing
处理 Treatment | 主成分1 Principal component 1 | 主成分2 Principal component 2 | 主成分3 Principal component 3 | U1 | U2 | U3 | D值 D value | 抗旱性排名 Drought resistance ranking |
---|---|---|---|---|---|---|---|---|
WD | -4.293 | 0.026 | -0.328 | 0.000 | 0.428 | 0.424 | 0.220 | 7 |
KD | 0.174 | -0.258 | 1.504 | 0.761 | 0.371 | 1.000 | 0.671 | 3 |
ZD | 1.120 | 2.862 | 0.217 | 0.922 | 1.000 | 0.595 | 0.890 | 1 |
DD | 0.549 | 0.715 | 0.576 | 0.825 | 0.567 | 0.708 | 0.717 | 2 |
YD | 1.580 | -1.625 | -1.320 | 1.000 | 0.095 | 0.112 | 0.537 | 6 |
TD | 0.383 | 0.377 | -1.674 | 0.796 | 0.499 | 0.000 | 0.555 | 4 |
FD | 0.487 | -2.096 | 1.025 | 0.814 | 0.000 | 0.849 | 0.545 | 5 |
权重Weight | 0.485 | 0.338 | 0.177 |
Treatment | D value(X0) | RWC(X1) | RWL(X2) | MDA(X3) | Pro(X4) | SS(X5) | SP(X6) | POD(X7) | SOD(X8) | ChI(X9) |
---|---|---|---|---|---|---|---|---|---|---|
WD | -1.940 | -2.340 | -1.374 | 2.185 | -0.665 | -0.826 | -1.991 | -0.714 | -1.766 | -0.992 |
KD | 0.420 | 0.262 | 0.330 | -0.080 | 0.630 | 1.377 | -0.155 | -0.337 | -0.614 | 0.376 |
ZD | 1.566 | -0.007 | -0.818 | 0.014 | 2.208 | -0.655 | 0.313 | 0.725 | 1.471 | 1.774 |
DD | 0.661 | 0.686 | -0.411 | 0.151 | -0.273 | 0.609 | -0.190 | 0.497 | 0.622 | 1.046 |
YD | -0.281 | 0.774 | 1.835 | -0.194 | -0.666 | -0.953 | 1.675 | -0.783 | 0.742 | -0.785 |
TD | -0.187 | 0.005 | -0.374 | -0.991 | -0.555 | -0.920 | 0.251 | 1.856 | 0.160 | -0.648 |
FD | -0.239 | 0.620 | 0.811 | -1.085 | -0.679 | 1.367 | 0.098 | -1.244 | -0.615 | -0.772 |
表5 数据的无量纲化处理
Table 5 Non-dimensional processing of data
Treatment | D value(X0) | RWC(X1) | RWL(X2) | MDA(X3) | Pro(X4) | SS(X5) | SP(X6) | POD(X7) | SOD(X8) | ChI(X9) |
---|---|---|---|---|---|---|---|---|---|---|
WD | -1.940 | -2.340 | -1.374 | 2.185 | -0.665 | -0.826 | -1.991 | -0.714 | -1.766 | -0.992 |
KD | 0.420 | 0.262 | 0.330 | -0.080 | 0.630 | 1.377 | -0.155 | -0.337 | -0.614 | 0.376 |
ZD | 1.566 | -0.007 | -0.818 | 0.014 | 2.208 | -0.655 | 0.313 | 0.725 | 1.471 | 1.774 |
DD | 0.661 | 0.686 | -0.411 | 0.151 | -0.273 | 0.609 | -0.190 | 0.497 | 0.622 | 1.046 |
YD | -0.281 | 0.774 | 1.835 | -0.194 | -0.666 | -0.953 | 1.675 | -0.783 | 0.742 | -0.785 |
TD | -0.187 | 0.005 | -0.374 | -0.991 | -0.555 | -0.920 | 0.251 | 1.856 | 0.160 | -0.648 |
FD | -0.239 | 0.620 | 0.811 | -1.085 | -0.679 | 1.367 | 0.098 | -1.244 | -0.615 | -0.772 |
指标Index | 关联系数Correlation coefficient ζj(k) | 关联度Correlation degree(r) | 关联序Order of association | ||||||
---|---|---|---|---|---|---|---|---|---|
WD | KD | ZD | DD | YD | TD | FD | |||
RWC | 0.546 | 0.912 | 0.666 | 0.953 | 0.951 | 0.806 | 0.870 | 0.810 | 3 |
RWL | 0.795 | 0.834 | 0.572 | 0.674 | 0.932 | 0.718 | 0.991 | 0.714 | 7 |
MDA | 0.514 | 0.967 | 0.767 | 0.917 | 0.888 | 0.745 | 0.814 | 0.709 | 8 |
Pro | 0.826 | 0.889 | 0.905 | 0.864 | 0.862 | 0.891 | 0.998 | 0.794 | 4 |
SS | 0.820 | 0.827 | 0.731 | 0.980 | 0.855 | 0.872 | 0.763 | 0.701 | 9 |
SP | 0.800 | 0.952 | 0.822 | 0.845 | 0.713 | 0.977 | 0.891 | 0.764 | 5 |
POD | 0.824 | 0.963 | 0.860 | 0.974 | 0.855 | 0.782 | 0.923 | 0.719 | 6 |
SOD | 0.729 | 0.791 | 0.832 | 0.939 | 0.852 | 0.980 | 0.860 | 0.853 | 1 |
ChI | 0.774 | 0.971 | 0.792 | 0.886 | 0.634 | 0.666 | 0.709 | 0.843 | 2 |
表6 干旱处理的抗旱性综合评价值与各指标的关联系数、关联度和关联序
Table 6 Correlation coefficient, correlation degree and correlation order of the comprehensive evaluation values and each index of drought resistance under drought treatment
指标Index | 关联系数Correlation coefficient ζj(k) | 关联度Correlation degree(r) | 关联序Order of association | ||||||
---|---|---|---|---|---|---|---|---|---|
WD | KD | ZD | DD | YD | TD | FD | |||
RWC | 0.546 | 0.912 | 0.666 | 0.953 | 0.951 | 0.806 | 0.870 | 0.810 | 3 |
RWL | 0.795 | 0.834 | 0.572 | 0.674 | 0.932 | 0.718 | 0.991 | 0.714 | 7 |
MDA | 0.514 | 0.967 | 0.767 | 0.917 | 0.888 | 0.745 | 0.814 | 0.709 | 8 |
Pro | 0.826 | 0.889 | 0.905 | 0.864 | 0.862 | 0.891 | 0.998 | 0.794 | 4 |
SS | 0.820 | 0.827 | 0.731 | 0.980 | 0.855 | 0.872 | 0.763 | 0.701 | 9 |
SP | 0.800 | 0.952 | 0.822 | 0.845 | 0.713 | 0.977 | 0.891 | 0.764 | 5 |
POD | 0.824 | 0.963 | 0.860 | 0.974 | 0.855 | 0.782 | 0.923 | 0.719 | 6 |
SOD | 0.729 | 0.791 | 0.832 | 0.939 | 0.852 | 0.980 | 0.860 | 0.853 | 1 |
ChI | 0.774 | 0.971 | 0.792 | 0.886 | 0.634 | 0.666 | 0.709 | 0.843 | 2 |
[1] | 吴建明, 李燕娇, 邓宇驰, 等. 中国甘蔗栽培的研究进展[J]. 广西科学, 2022, 29(4): 613-626. |
Wu JM, Li YJ, Deng YC, et al. Research progress in sugarcane cultivation in China[J]. Guangxi Sci, 2022, 29(4): 613-626. | |
[2] |
de Abreu LGF, Grassi MCB, de Carvalho LM, et al. Energy cane vs sugarcane: Watching the race in plant development[J]. Ind Crops Prod, 2020, 156: 112868.
doi: 10.1016/j.indcrop.2020.112868 URL |
[3] | 蒋雨珂. 干旱锻炼对甘蔗根系形态建成及其根际微生物群落的影响[D]. 南宁: 广西大学, 2021. |
Jiang YK. effects of drought exercise on root morphogenesis and rhizosphere microbial community of sugarcane[D]. Nangning: Guangxi University, 2021. | |
[4] |
Misra V, Solomon S, Mall AK, et al. Morphological assessment of water stressed sugarcane: A comparison of waterlogged and drought affected crop[J]. Saudi J Biol Sci, 2020, 27(5): 1228-1236.
doi: 10.1016/j.sjbs.2020.02.007 URL |
[5] |
Ferreira THS, Tsunada MS, Bassi D, et al. Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions[J]. Front plant sci, 2017, 8: 1077.
doi: 10.3389/fpls.2017.01077 pmid: 28690620 |
[6] |
李佩婷, 赵振丽, 黄潮华, 等. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
doi: 10.3724/SP.J.1006.2022.14121 |
Li PT, Zhao ZL, Huang CH, et al. Analysis of drought response regulatory network in sugarcane based on transcriptomes and WGCNA[J]. Acta Agrono Sin, 2022, 48(7): 1583-1600. | |
[7] |
Guga SR, Ma YN, Dao RA, et al. Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China[J]. Agric Water Manag, 2023, 275: 108035.
doi: 10.1016/j.agwat.2022.108035 URL |
[8] |
Wang JF, Hou WP, Christensen MJ, et al. Role of Epichloe endophytes in improving host grass resistance ability and soil properties[J]. J Agric Food Chem, 2020, 68(26): 6944-6955.
doi: 10.1021/acs.jafc.0c01396 URL |
[9] |
Zuo YL, Hu QN, Qin L, et al. Species identity and combinations differ in their overall benefits to Astragalus adsurgens plants inoculated with single or multiple endophytic fungi under drought conditions[J]. Front Plant Sci, 2022, 13: 933738.
doi: 10.3389/fpls.2022.933738 URL |
[10] | 张文英, 蒿若超, 汪嫒嫒, 等. 内生真菌印度梨形孢诱导提高玉米苗期抗旱性研究初探[J]. 玉米科学, 2013, 21(5): 127-130. |
Zhang WY, Hao RCh, Wang AA, et al. Conferring drought tolerance in maize seeding by endophytic fungus Piriformospora indica[J]. J Maize Sci, 2013, 21(5): 127-130. | |
[11] |
Morales-Quintana L, Moya M, Santelices-Moya R, et al. Improvement in the physiological and biochemical performance of strawberries under drought stress through symbiosis with Antarctic fungal endophytes[J]. Front Microbiol, 2022, 13: 939955.
doi: 10.3389/fmicb.2022.939955 URL |
[12] |
Khan Z, Rho H, Firrincieli A, et al. Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia[J]. Curr Plant Biol, 2016, 6: 38-47.
doi: 10.1016/j.cpb.2016.08.001 URL |
[13] |
Scudeletti D, Crusciol CAC, Bossolani JW, et al. Trichoderma asperellum inoculation as a tool for attenuating drought stress in sugarcane[J]. Front Plant Sci, 2021, 12: 645542.
doi: 10.3389/fpls.2021.645542 URL |
[14] |
谷书杰, 钱禛锋, 娄永明, 等. 接种内生菌对干旱胁迫下甘蔗的生理影响[J]. 中国农学通报, 2022, 38(6): 42-47.
doi: 10.11924/j.issn.1000-6850.casb2021-0416 |
Gu SJ, Qian ZF, Lou YM, et al. Physiological effects of endophytic bacteria inoculated on sugarcane under drought stress[J]. Chin Agric Sci Bull, 2022, 38(6): 42-47. | |
[15] | 杜成忠. 不同甘蔗品种抗旱性的生理和分子机制[D]. 南宁: 广西大学, 2015. |
Du CZ. Physiological and molecular mechanisms of drought resistance of different sugarcane varieties[D]. Nanning: Guangxi University, 2015. | |
[16] |
蔺豆豆, 赵桂琴, 琚泽亮, 等. 15份燕麦材料苗期抗旱性综合评价[J]. 草业学报, 2021, 30(11): 108-121.
doi: 10.11686/cyxb2021219 |
Lin DD, Zhao GQ, Ju ZL, et al. Comprehensive evaluation of drought resistance of 15 oat materials at seedling stage[J]. Acta Prataculturae Sin, 21, 30(11): 108-121. | |
[17] | 李懿洋. 甘肃省产业结构与经济增长的灰色关联分析[J]. 企业经济, 2011(5): 20-23. |
Li YY. Grey correlation analysis between industrial structure and economic growth in Gansu Province[J]. Enterp Econ, 2011(5): 20-23. | |
[18] | 方自豪. 中蔗品种(系)苗期抗旱性综合评价及抗旱指标筛选[D]. 福州: 福建农林大学, 2022. |
Fang ZH. Comprehensive evaluation of drought resistance of medium sugarcane varieties(lines)at seedling stage and screening of drought resistance indexes[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022. | |
[19] | 李小玉, 田宏先, 王瑞霞. 灰色关联度分析和主成分分析在油菜抗旱育种中的应用[J]. 种子, 2021, 40(9): 92-97. |
Li XY, Tian HX, Wang RX. Aplication of grey correlation degree analysis and principal component analysis in drought resistance breeding of Brassica juncea L.[J]. Seed, 2019, 40(9): 92-97. | |
[20] | 何永涛, 胡宇, 段慧荣, 等. 披碱草属4个牧草品种苗期抗旱性综合评价[J]. 中国草地学报, 2023, 45(1): 77-87. |
He YT, Hu Y, Duan HR, et al. Comprehensive evaluation of drought resistance of four Eymus varieties at seedling stage[J]. Chin J Grassland, 2023, 45(1): 77-87. | |
[21] | 刘硕. 不同甘蔗品种伸长期对干旱胁迫生理及形态响应研究[D]. 昆明: 云南大学, 2022. |
Liu S. Physiological and morphological responses of different sugarcane varieties to drought stress during elongation period[D]. Kunming: Yunnan University, 2022. | |
[22] | 李海碧, 周会, 韦金菊, 等. 甘蔗常用亲本的田间抗旱指标筛选及抗旱性评价[J]. 南方农业学报, 2023, 54(1): 46-55. |
Li HB, Zhou H, Wei JJ, et al. Drought resistance index screening and drought resistance evaluation of commonly-used sugarcane parents in field[J]. J South Agric Sci, 2019, 54(1): 46-55. | |
[23] | 谭秦亮, 程琴, 潘成列, 等. 干旱胁迫对甘蔗新品种桂热2号生理指标的影响[J]. 作物杂志, 2022(3): 161-167. |
Tan QL, Cheng Q, Pan CL, et al. Effects of drought stress on physiological indexes of a new sugarcane variety Gure 2[J]. Crops, 2022(3): 161-167. | |
[24] | 刘硕, 樊仙, 杨绍林, 等. 干旱胁迫对甘蔗光合日变化及相关特性的影响[J]. 南方农业学报, 2022, 53(2): 430-440. |
Liu S, Fan X, Yang SL, et al. Effects of drought stress on diurnal changes and related characteristics of sugarcane photosynthesis[J]. J South Agric Sci, 2022, 53(2): 430-440. | |
[25] | Liu N, Jacquemyn H, Liu Q, et al. Effects of a dark septate fungal endophyte on the growth and physiological response of seedlings to drought in an epiphytic orchid[J]. Fron Microbiol, 2022, 13: 961172. |
[26] |
Wang Z, Solanki MK, Yu ZX, et al. Draft genome analysis offers insights into the mechanism by which streptomyces chartreusis WZS021 increases drought tolerance in sugarcane[J]. Front Microbiol, 2018, 9: 3262.
doi: 10.3389/fmicb.2018.03262 URL |
[27] |
Wu HH, Zou YN, Rahman M, et al. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress[J]. Sci rep, 2017, 7(1): 1-10.
doi: 10.1038/s41598-016-0028-x |
[28] | 李其勇, 朱从桦, 李星月, 等. 水稻芽期抗旱性综合评价及鉴定指标鉴选[J]. 西北农业学报, 2023, 32(1): 18-32. |
Li QY, Zhu CH, Li XY, et al. Comprehensive evaluation and identification index of drought resistance at germination stage of rice[J]. Acta Agric Boreali-occidentalis Sin, 2023, 32(1): 18-32. |
[1] | 丁凯鑫, 王立春, 田国奎, 王海艳, 李凤云, 潘阳, 庞泽, 单莹. 烯效唑缓解植物干旱损伤的研究进展[J]. 生物技术通报, 2023, 39(6): 1-11. |
[2] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[3] | 李心怡, 姜春秀, 薛丽, 蒋洪涛, 姚伟, 邓祖湖, 张木清, 余凡. 多荧光标记引物增强甘蔗染色体寡聚核苷酸探针杂交信号[J]. 生物技术通报, 2023, 39(5): 103-111. |
[4] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[5] | 黄佳艳, 冯小艳, 沈林波, 王文治, 胡海燕, 张树珍. 甘蔗ShPR10基因的克隆及其编码蛋白与甘蔗线条花叶病毒P1蛋白的互作研究[J]. 生物技术通报, 2023, 39(10): 163-174. |
[6] | 陈光, 李佳, 杜瑞英, 王旭. pOsHAK1:OsFLN2提高水稻的糖代谢水平和抗旱性[J]. 生物技术通报, 2022, 38(8): 92-100. |
[7] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[8] | 赵婷婷, 王俊刚, 王文治, 冯翠莲, 冯小艳, 张树珍. 甘蔗单糖转运蛋白基因ShSTP7序列分析及组织表达特征测定[J]. 生物技术通报, 2022, 38(4): 72-78. |
[9] | 张靖, 尤垂淮, 曹月, 崔天真, 杨靖涛, 罗俊. 甘蔗根际微生态及其与黑穗病防治之间的关系[J]. 生物技术通报, 2022, 38(11): 21-31. |
[10] | 杨馥榕, 王晓红, 肖琪, 方娟, 李立华. 木槿品种对镉胁迫的生理响应及耐镉能力评价[J]. 生物技术通报, 2022, 38(1): 98-107. |
[11] | 冯翠莲, 万玥, 王俊刚, 冯小艳, 赵婷婷, 王文治, 沈林波, 张树珍. 转Cry1Ac-2A-gna基因甘蔗BCG-17转化体特异性检测方法的建立[J]. 生物技术通报, 2021, 37(5): 248-258. |
[12] | 马旭辉, 陈茹梅, 柳小庆, 赵军, 张霞. 褪黑素对玉米幼苗根系发育和抗旱性的影响[J]. 生物技术通报, 2021, 37(2): 1-14. |
[13] | 张云川, 林熠轩, 曹新文, 王海楠, 闫洁. 橡胶草TkDREB2基因的克隆以及在烟草中的抗旱功能分析[J]. 生物技术通报, 2021, 37(11): 212-224. |
[14] | 王灵, 向文洲, 卫华宁, 吕金亭, 吴华莲, 吴后波. 一株微杆菌CBA01对球形棕囊藻的溶藻特性与生理响应研究[J]. 生物技术通报, 2021, 37(10): 91-99. |
[15] | 冯翠莲, 张树珍. 抗虫转基因甘蔗的培育及其抗性丧失的防控策略[J]. 生物技术通报, 2020, 36(7): 209-219. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||