生物技术通报 ›› 2014, Vol. 0 ›› Issue (2): 15-23.
张珂, 翁群芳, 付昊昊
收稿日期:
2013-08-13
出版日期:
2014-02-27
发布日期:
2014-02-27
作者简介:
张珂,女,硕士研究生,研究方向:昆虫分子生物学;E-mail:zhangke2110@163.com
基金资助:
Zhang Ke, Weng Qunfang, Fu Haohao
Received:
2013-08-13
Published:
2014-02-27
Online:
2014-02-27
摘要: 热激蛋白90(Heat shock protein 90,Hsp90)是细胞内最为广泛的分子伴侣之一,间接调控细胞内多条与细胞增殖、分化、存活、滞育以及与凋亡相关的信号转导通路。近年来,对Hsp90家族成员在分子水平上的认识不断深入,Hsp90已成为细胞免#br#疫、信号转导以及抗肿瘤研究的前沿课题。昆虫功能基因组的研究正在世界范围内掀起热潮,与昆虫滞育相关热激蛋白的研究也不断深入。对近年来国内外Hsp90的生物学特性、生物学功能及其在昆虫防治中的研究现状及前景进行综述,以期为害虫综合防治的研究提供参考信息。
张珂, 翁群芳, 付昊昊. 昆虫热激蛋白90的研究进展[J]. 生物技术通报, 2014, 0(2): 15-23.
Zhang Ke, Weng Qunfang, Fu Haohao. Research Progress on Heat Shock Protein 90 of Insects[J]. Biotechnology Bulletin, 2014, 0(2): 15-23.
[1] Lindquist S. The heat-shock response[J]. Annual Review of Bio-chemistry, 1986, 55:1151-1191. [2] Zhao L, Jones WA. Expression of heat shock protein genes in insect stress responses[J]. Invertebrate Survival, 2012, 9:93-101. [3] Picard D. Heat-shock protein 90, a chaperone for folding and regulation[J]. Cell Mol Life Sci, 2002, 59(10):1640-1648. [4] Wegele H, Muller L, Buchner J. Hsp70 and Hsp90-a relay team for protein folding[J]. Rev Physiol Biochem Pharmacol, 2004, 151:1-44. [5] Jackson SE, Queistch C, Toft D. Hsp90:from structure to phenotype[J]. Nat Struct Mol Biol, 2004, 11(12):1152-1155. [6] Shinozaki F, Minami M, Chiba T, et al. Depletion of Hsp90 beta induces multiple defects in B cell receptor signaling[J]. Biol Chem, 2006, 281(24):16361-16369. [7] Zuehlke A, Johnson JL. Hsp90 and Co-Chaperones twist the functions of diverse client proteins[J]. Biopolymers, 2010, 93(3):211-217. [8] Ritossa F. A new puffing pattern induced by temperature shock and DNP in Drosophila[J]. Experientia, 1962, 18(12):571- 573. [9] Tissières A, Mitchell HK, Tracy UM., et al. Protein synthesis in salivary glands of Drosophila melanogaster:relation to chromosome puffs[J]. Molecular Biology, 1974, 84(3):389-398. [10] Adams C, Rinne RW. Stress protein formation:gene expression and environmental interaction with evolutionary significance[J]. Int Rev Cytol, 1982, 79:305- 315. [11] Carrasco R, Almoguera C, Jordano J. A plant small heat shock prot-ein gene expressed during zygotic embryogenesis but non inducible by heat stress[J]. Biol Chem, 1997, 272:27470-27475. [12] Denlinger DL. Regulation of diapause[J]. Annu Rev Entomol, 2002, 47:93-122. [13] Stephanou G, Alahiotis SN. Non-Mendelian Inheritance of "Heat-Sensitivity" in Drosophila melanogaster[J]. Genetics, 1983, 103:93-107. [14] Collins GG, Nie XL, Saltveit ME. Heat Shock proteins and chilling sensitivity of m ung bean hypocotyls[J]. Exp Bot, 1995, 46(7):795-802. [15] Prasinos C, Krampis K, Samakovli D, et al. Tight regulation of expression of two Arabidopsis cytosolic HSP90 genes during embryo development[J]. Exp Bot, 2005, 56(412):633-644. [16] Ogiso H, Kagi N, Matsumoto E, et al. Phosphorylation analysis of 90kDa heat shock protein within the cytosolic arylhydrocarbon receptor complex[J]. Biochem, 2004, 43(49):15510-15519. [17] Noriko S, Tetsuya Y, Yuichi S, et al. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3[J]. Biochemical and Biophysical Research Communications, 2003, 300(4):847-852. [18] Prodromou C, Roe SM, O’Brien R, et al. Identification and structural characterization of the ATP/ADP-binding site in the HsP90 molecular chaperone[J]. Cell, 1997, 90(1):65-75. [19] Pearl LH, Prodromou C. Structure and mechanism of the HsP90 molecular chaperone machinery[J].Annual Review of Biochemistry, 2006, 75:271-294. [20] Young JC, Obermann WM, Hartl FU. Specific binding of tetratrico-peptide repeat proteins to the C-terminal 12-kDa domain of hsp90[J]. Biological Chemistry, 1998, 273:18007-18010. [21] Fontana J, Fulton D, Chen Y, et al. Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release[J]. Circulation Research, 2002, 90:866-873. [22] Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(20):10832-10837. [23] Meyer P, Prodromou C, Hu B, et al. Structural and functional analysis of the middle segment of hsp90:Implications for ATP hydrolysis and client protein and cochaperone interactions[J]. Molecular Cell, 2003, 11(3):647-658. [24] Panaretou B, Siligardi G, Meyer P, et al. Activation of the ATPase activity of hsp90 by the stress-regulated cochaperone ahal[J]. Molecular Cell, 2002, 10:1307-1318. [25] Csermely P, Schnaider T, Soti C. The 90-kDa molecular chaperone family:Structure, function and clinical applications. A comprehensive review[J]. Pharmacology Therapeutics, 1998, 79(2):l29-l68. [26] Zou J, Guo Y, Guettouche T, et al. Repression of heat shock transcription factor HSF1 activation by HSP90(HSP90 complex)that forms a stress-sensitive complex with HSF1[J]. Cell, 1998, 94(4):471-480. [27] Lohmann C, Eggers-Schumacher G, Wunderlich M, et al. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis[J]. Mol Genet Genom, 2004, 271(1):11-21. [28] Rutherford SL, Hirate Y, Swalla B. The Hsp90 capacitor, developmental remodeling, and evolution:the robustness of gene networks and the curious evolvability of metamorphosis[J]. Crit Rev Biochem Mol Biol, 2007, 42(5):355-372. [29] Bohen SP. Hsp90 mutants disrupt glucocorticoid receptor ligand binding and destabilize aporeceptor complexes[J]. Biol Chem, 1995, 270(49):29433-29438. [30] Caplan AJ. Yeast molecular chaperones and the mechanism of steroid hormone action[J]. Trends Endocr Mebab, 1997, 8(7):271-276. [31] Rutherford SL, Zuker CS. Protein folding and the regulation of signaling pathways[J]. Cell, 1994, 79(7):1129-1132. [32] Morimoto RT, Tissieres A, Georgopoulos C. The biology of heat shock proteins and molecular chaperones[M]. Cold Spring Harhor:Cold Spring Harbor Monograph Series, 1994, 26:496. [33] Elizabeth AC, Jonathan SW, Arthur LH. Heat shock proteins and molecular chaperones:Mediators of protein conformation and turnover in the cell[J]. Cell, 1994, 78(3):388-372. [34] de Carcer G, Avides MC, Lallena MJ. Requirement of Hsp90 for centrisomal function reflects its regulation of Polo kinase stability[J]. Embo, 2001, 20(11):2878-2884. [35] Dalley BK, Golomb M. Gene expression in the Caenorhabditis elegans dauer larva[J]. Dev Biol, 1992, 151(1):80-90. [36] Young JC, Moarefi I, Hartl FU. Hsp90:a specialized but essential protein-folding tool[J]. Cell Biology, 2001, 154(2):267-273. [37] McClellan AJ, Xia Y, Deutschbauer AM, et al. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches[J]. Cell, 2007, 131(1):121-135. [38] Borkovich KA, Farrelly FW, Finkelstein DB, et al. hsp82 is an essential Protein that is required in higher concentration for growth of cells at higher temperatures[J]. Molecular and Cellular Biology, 1989, 9(9):3919-3930. [39] Huang LH, Wang CZ, Kang L. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leafminer, Liriomyza sativa[J]. Insect Physiology, 2009, 55(3):279-285. [40] 杨丽红. 柑橘全爪螨 Panonychus citri(McGregor)对热胁迫的响应机制研究[D].重庆:西南大学, 2011. [41] Xu J, Shu J, Zhang Q. Expression of the Tribolium castaneum(Coleoptera:Tenbrionidae)hsp83 gene and its relation to oogenesis during ovarian maturation[J]. Genetics and Genomics, 2010, 37(8):513-522. [42] Chen LZ, Ma WH, Wang XP, et al. Analysis of pupal head proteome and its alteration in diapausing pupae of Helicoverpa armigera[J]. Insect Physilolgy, 2010, 56(3):247-252. [43] Christine Q, Todd AS, Susan L. Hsp90 as a capacitor of phenotypic variation[J]. Nature, 2002, 417(6889):598-599. [44] Rutheford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution[J]. Nature, 1998, 396(6709):336-342. [45] Miska KB, Fetterer RH, Min W, et al. Heat shock protein 90 genes of two species of poultry eimeria:expression and evolutionary analysis[J]. Parasitology, 2005, 91(2):300-306. [46] Peroval M, Pery P, Labbe M.The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth[J]. Parasitology, 2006, 36(10-11):1205-1215. [47] Echeverria PC, Matrajt M, Harb OS, et al. Toxoplasma gondii Hsp90 is a potential drug target whose expression and subcellular localization are developmentally regulated[J]. Molecular Biology, 2005, 350(4):723-734. [48] Goto SG, Kimura MT.Heat-shock-responsive genes are not involved in the adult diapause of Drosophila triauraria[J].Gene, 2004, 326(4):117-122. [49] Denlinger DL. Why study diapauses?[J]. Entomological Research, 2008, 38(1):1-9. [50] Zimmerman JL, Petri W, Meselson M. Accumulation of a specific subset of D. melanogaster heat shock mRNAs in normal development without heat shock[J]. Cell, 1983, 32(4):1161-1170. [51] Brown MA, Zhu L, Schmidt C, et al. Hsp90 From signal transduction to cell transformation[J]. Biochem Biophys Res, 2007, 363(2):241-246. [52] Marcus JM. The development and evolution of crossveins in insect wings[J]. Anat, 2001, 199(1-2):211-216. [53] Arbona M, Defrutos R, Tanguay RM. Transcriptional and translation study of the Drosophlia subobscura Hsp83 gene in normal and heat shock conditions[J]. Genome, 1993, 36(4):694-700. [54] Yiangou M, Tsapogas P, Nikolaidis N, et al. Heat-shock gene expression during recovery after transient cold shock in Drosophila auraria[J]. Cytobios, 1997, 92(3 169):91-98. [55] Francesca DL, Mauro DV, Elena F, et al. Characterization of the heat shock protein 90 gene in the plant parasitic nematode Meloidogyne artiellia and its expression as related to different developmental stages and temperature[J]. Gene, 2009, 440:16-22. [56] Rinehart JP, Denlinger DL. Heat-shock protein 90 is downregulated during pupal diapause in the flesh fly, Sarcophaga crassipalpis, but remains responsive to thermal stress[J]. Insect Molecular Biology, 2000, 9(6):641-645. [57] Huang LH, Chen B, Kang L. Impact of mild temperature hardening on thermotolerance, fecundity, and Hsp gene expression in Liriomyza huidobrensis[J]. Insect Physiol, 2007, 53(2):1199-1205. [58] Tungjitwitayakul J, Tatun N, Singtripo PT, et al. Characteristic expression of three heat shock-responsive genes during larval diapause in the bamboo borer Omphisa fuscidentalis[J].Zoological Science, 2008, 25(3):321-333. [59] Sonoda S, Fukumoto K, Izumi Y, et al. Cloning of heat shock protein genes(hsp90 and hsc70)and their expression during larval diapause and cold tolerance acquisition in the rice stem borer, Chilo suppressalis Walker[J]. Archives of Insect Biochemistry and Physiology, 2006, 63(1):36-47. [60] Grenert JP, Sullivan WP, Fadden P, et al. The amino-terminal domain of heat shock protein 90(Hsp90)that binds geldanamycin is an ATP/ADP switch domain that regulates Hsp90 conformation[J]. Biological Chemistry, 1997, 272(38):23843-23850. [61] Wolschin F, Gadau J. Deciphering proteomic signatures of early diapause in Nasonia[J]. PLoS ONE, 2009, 4(7):e6394. [62] Zhang Q, Denlinger DL. Molecular characterization of heat shock protein 90, 70 and 70 cognate cDNAs and their expression patterns during thermal stress and pupal diapause in the corn earworm[J]. Insect Physiology, 2010, 56(2):138-150. [63] Yocum GD, Joplin KH, Denlinger DL. Upregulation of a 23kDa small heat shock protein transcript during pupal diapause in the flesh fly, Sarcophaga crassipalpis[J]. Insect Biochemistry and Molecular Biology, 1998, 28(9):677-682. [64] Hayward SA, Pavlides SC, Tammariello SP, et al. Temporal expression patterns of diapause-associated genes in flesh fly pupae from the onset of diapause through postdiapause quiescence[J]. Insect Physiology, 2005, 51(6):631-640. [65] Rinehart JP, Li AQ, Yocum GD, et al. Up-regulation of heat shock proteins is essential for cold survival during insect diapauses[J].Proc Natl Acad Sci, 2007, 104(27):11130-11137. [66] Gkouvitsas T, Kontogiannatos D, Kourti A. Cognate Hsp70 gene is induced during deep larval diapause in the moth Sesamia nonagri-oides[J]. Insect Molecular Biology, 2009, 18(2):253-264. [67] Gkouvitsas T, Kontogiannatos D, Kourti A. Expression of the Hsp83 gene in response to diapause and thermal stress in the moth Sesamia nonagrioides[J]. Insect Molecular Biology, 2009, 18(6):759-768. [68] Bagchi D, Bagchi M, Hassoun EA, et al. In vitro and in vivo generation of reactive oxygen species, DNA damage, and lactate dehydrogenase leakage by selected pesticides[J]. Toxicology, 1995, 104(1-3):129-140. [69] Freeman ML, Meredith MJ. Glutathione conjugation and induction of a 32, 000 dalton stress protein[J]. Biochemical Pharmacology, 1989, 38(2):299-304. [70] Feng HZ, Wang L, Liu YH, et al. Molecular characterization and expression of a heat shock protein gene(hsp90)from the carmine spider mite, Tetranychus cinnabarinus(Boisduval)[J]. Insect Science, 2010, 10:112-118. [71] 王利华, 张月亮, 方继朝.高温胁迫提高灰飞虱抗药性的机制研究[C]. 植保科技创新与病虫防控专业化-中国植物保护学会, 2011年学术年会论文集. [72] 王海鸿. B型烟粉虱热休克蛋白基因的克隆和表达及其与胁迫耐受性关系的研究[D].北京:中国农业科学院, 2005:90-95. [73] Auluck PK, Chan HY, Trojanowski JQ, et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease[J]. Science, 2002, 295(5556):865-868. [74] Nakano K, Iwama GK. The 70-kDa heat shock protein response in two intertidal sculpins, Oligocottus maculosus and O. snyderi:relationship of hsp70 and thermal tolerance[J]. Comparative Biochemistry and Physiology, 2002, 133(1):79-94. [75] Yoshimi T, Minowa K, Karouna-Renier NK, et al. Activation of a stress-induced gene by insecticides in the midge, Chironomus yoshimatsui[J]. Biochemical and Molecular Toxicology, 2002, 16(1):10-17. [76] Sharma S, Rohilla MS, Reddyp VJ, et al. In vitro induction of 60-kDa and 70-kDa heat shock proteins by endosulphan and monocrotophos in sheep blowfly Lucilia cuprina[J]. Archives of Environment Contamination and Toxicology, 2008, 55(1):57-69. [77] Langer-Jaesrich M, K?hler HR, Gerhardt A. Assessing toxicity of the insecticide thiacloprid on Chironomus riparius(Insecta:Diptera)using multiple end points[J]. Archives of Environment Contamination and Toxicology, 2010, 58(4):963-972. [78] Shashikumar S, Rajini PS. Cypermethrin elicited responses in heat shock protein and feeding in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2010, 73(5):1057-1062. |
[1] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[2] | 梅欢, 李玥, 刘可蒙, 刘吉华. 小檗碱桥酶高效原核表达及生物合成l-SLR的研究[J]. 生物技术通报, 2023, 39(7): 277-287. |
[3] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[4] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[5] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[6] | 孙德权, 陆新华, 李伟明, 胡玉林, 段雅婕, 庞振才, 胡会刚. 介孔二氧化硅纳米粒在农业中的应用[J]. 生物技术通报, 2022, 38(5): 228-239. |
[7] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[8] | 罗雪琮, 安梦楠, 吴元华, 夏子豪. 重组酶聚合酶扩增技术在植物病毒检测中的应用[J]. 生物技术通报, 2022, 38(2): 269-280. |
[9] | 赵宝顶, 吕佳, 申玉玉, 桂玲, 陈钟秀, 陈杰, 路福平, 黎明. 基于信号肽和分子伴侣策略促进大肠杆菌高效转化尿苷[J]. 生物技术通报, 2022, 38(11): 238-249. |
[10] | 徐进益, 那彬彬, 刘顺, 陈超, 孙红, 郑玉龙. 青贮饲料的优良乳酸菌及其应用[J]. 生物技术通报, 2021, 37(9): 39-47. |
[11] | 段绪果, 张玉华, 黄婷婷, 丁乾, 栾舒越, 朱秋雨. 化学分子伴侣及诱导条件协同强化Thermotoga maritima α-葡聚糖磷酸化酶可溶性表达[J]. 生物技术通报, 2021, 37(8): 233-242. |
[12] | 贺小丽, 郭磊周, 韩佳慧, 唐殷, 袁媛, 代其林, 平淑珍, 江世杰. 细菌周质分子伴侣LolA研究进展[J]. 生物技术通报, 2021, 37(8): 275-283. |
[13] | 翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174. |
[14] | 贺扬, 余巧玲, 王均, 覃川杰, 李华涛. 罗非鱼原核表达基因研究进展[J]. 生物技术通报, 2021, 37(2): 195-202. |
[15] | 薛帆正, 黄海辰, 吴福泉, 李晓敏, 吴小平, 傅俊生. 真菌黑色素研究现状与产业应用[J]. 生物技术通报, 2021, 37(11): 32-41. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||