生物技术通报 ›› 2014, Vol. 0 ›› Issue (5): 37-44.
吕晓萌 胡彤 俞婷 崔艳华
收稿日期:
2013-10-29
出版日期:
2014-05-23
发布日期:
2014-05-24
作者简介:
吕晓萌,女,硕士研究生,研究方向:分子微生物学;E-mail:lvxn0620@163.com
基金资助:
Lü Xiaomeng Hu Tong Yu Ting Cui Yanhua
Received:
2013-10-29
Published:
2014-05-23
Online:
2014-05-24
摘要: 抗菌肽是一类从动植物、微生物体内分离得到的阳离子小分子量肽,具有天然的抗菌活性。它作用迅速,广谱,不易产生耐药性,具有重要的应用价值,近年来成为研究热点。普遍认为异源表达是生产大量抗菌肽的最有效方法。大肠杆菌作为经典的表达宿主,具有生长速度快、遗传背景清晰、有大量可利用的商业表达载体、易操作等优势,现已成为抗菌肽表达的首选宿主。乳酸菌作为世界公认安全的食品级微生物,近年来广泛用于抗菌肽的异源表达。着重阐述了抗菌肽在大肠杆菌、乳酸菌中重组表达的研究进展。
吕晓萌, 胡彤, 俞婷, 崔艳华. 细菌异源表达抗菌肽的研究进展[J]. 生物技术通报, 2014, 0(5): 37-44.
Lü Xiaomeng, Hu Tong, Yu Ting, Cui Yanhua. Advances of Heterogeneous Expression of Antimicrobial Peptides in Bacteria[J]. Biotechnology Bulletin, 2014, 0(5): 37-44.
[1] Drider D, Rebuffat S. Prokaryotic antimicrobial peptides:from genes to applications[M]. Springer New York Dordrecht Heidelberg London, 2011. [2] Parachin NS, Mulder KC, Viana AAB, et al. Expression systems for heterologous production of antimicrobial peptides[J]. Peptides, 2012, 38(2):446-456. [3] Sorensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J Biotech-nol, 2005, 115(2):113-128. [4] Li P, Xu ZN, Fang XM, et al. Preferential codons enhancing expres-sion level of human beta- defensin-2 in recombinant Escherichia coli[J]. Protein & Peptide Letters, 2004, 11(4):229-344. [5] Kane JF. Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J]. Curr Opin Biotechnol, 1995, 6(5):494-500. [6] Huang L, Ching CB, Jiang R, et al. Production of bioactive human beta-defensin 5 and 6 in Escherichia coli by soluble fusion expression[J]. Protein Expr Purif, 2008, 61(2):168-174. [7] Wang A, Su Y, Wang S, et al. High efficiency preparation of bioactive human alpha-defensin 6 in Escherichia coli Origami(DE3)pLysS by soluble fusion expression[J]. Appl Microbiol Biotechnol, 2010, 87(5):1935-1942. [8] Wang Q, Zhu F, Xin Y, et al. Expression and purification of antimicrobial peptide buforin IIb in Escherichia coli[J]. Biotechnol Lett, 2011, 33(11):2121-2126. [9] Zhong Z, Xu Z, Peng L, et al. Tandem repeat mhBD2 gene enhance the soluble fusion expression of hBD2 in Escherichia coli[J]. Appl Microbiol Biotechnol, 2006, 71(5):661-667. [10] 沈益, 劳学刚, 耿伟, 等. 抗菌肽cecropin-Xm在大肠埃希菌中的串联表达与抑瘤作用[J]. 中国抗生素杂志, 2007, 32(12):757-761. [11] Rao X, Hu J, Li S, et al. Design and expression of peptide antibiotic hPAB-beta as tandem multimers in Escherichia coli[J]. Peptides, 2005, 26(5):721-729. [12] Li YF. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli[J]. Biotechnol Appl Biochem, 2009, 54(1):1-9. [13] Li YF. Recombinant production of antimicrobial peptides in Escherichia coli:a review[J]. Protein Expr Purif, 2011, 80(2):260-267. [14] Peroutka IRJ, Orcutt SJ, Strickler JE, et al. SUMO fusion technology for enhanced protein expression and purification in prokaryotes and eukaryotes[J]. Methods Mol Biol, 2011, 705:15-30. [15] Fink J, Merrifield RB, Boman A, et al. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity[J]. J Biol Chem, 1989, 264(11):6260-6267. [16] Xu XX, Jin FL, Yu XQ, et al. High-level expression of the recombinant hybrid peptide cecropinA(1-8)-magainin2(1-12)with an ubiquitin fusion partner in Escherichia coli[J]. Protein Expr Purif, 2007, 55(1):175-182. [17] Bang SK, Kang CS, Han MD, et al. Expression of recombinant hybrid peptide hinnavin II/α-melanocyte-stimulating hormone in Escherichia coli:purification and characterization[J]. J Microbiol, 2010, 48(1):24-29. [18] Feng X, Liu C, Guo J, et al. Recombinant expression, purification, and antimicrobial activity of a novel hybrid antimicrobial peptide LFT33[J]. Appl Microbiol Biotechnol, 2012, 95(5):1191-1198. [19] 谢芳, 韩文瑜, 雷连成, 等. 牛蛙皮肤抗菌肽Ranalexin 基因的原核表达及其抑菌活性[J]. 浙江大学学报:农业与生命科学版, 2009, 35(1):27-32. [20] 韩宗玺, 马德莹, 刘胜旺, 等. 重组鸡抗菌肽Gallinacin-9的原核表达及其抗菌活性的鉴定[J]. 畜牧兽医学报, 2008, 39(10):1426-1431. [21] Tapia E, Montes C, Rebufel C, et al. Expression of an optimized Argopecten purpuratus antimicrobial peptide in E. coli and evaluation of the purified recombinant protein by in vitro challenges against important plant fungi[J]. Peptides, 2011, 9(32):1909-1916. [22] Wu MZ, Zhao L, Zhu L, et al. Expression and purification of chimeric peptide comprising EGFR B-cell epitope and measles virus fusion protein T-cell epitope in Escherichia coli[J]. Protein Expr Purif, 2013, 1(88):7-12. [23] 崔艳华, 徐德昌, 曲晓军. 乳酸菌基因组学研究进展[J]. 生物信息学, 2008, 6(2):85-89. [24] Chen R. Bacterial expression systems for recombinant protein production:E. coli and beyond[J]. Biotech Advances, 2012, 30(5):1102-1107. [25] Mierau I, Olieman K, Mond J, et al. Optimization of the Lactococcus lactis nisin controlled gene expression system NICE for industrial applications[J]. Microb Cell Fact, 2005, 4:16. [26] Christiaens H, Leer RJ, Pouwels PH. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay[J]. Appl Environ Microbiol, 1992, 58(12):3792-3798. [27] Bolotin A, Wincker P, Mauger S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403[J]. Genome Res, 2001, 11(5):731-753. [28] Rodríguez JM, Martínez MI, Horn N, et al. Heterologous production of bacteriocins by lactic acid bacteria[J]. Int J Food Microbiol, 2003, 80(2):101-116. [29] Mathiesen G, Naml?s HM, Ris?en PA, et al. Use of bacteriocin promoters for gene expression in Lactobacillus plantarum C11[J]. J Appl Microbiol, 2004, 96(4):819-827. [30] Mathiesen G, Sveen A, Piard JC, et al. Heterologous protein secretion by Lactobacillus plantarum using homologous signal peptides[J]. J Appl Microbiol, 2008, 105(1):215-226. [31] S?rvig E, Mathiesen G, Naterstad K, et al. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors[J]. Microbiology, 2005, 151, 2439-2449. [32] Klaenhammer T, Altermann E, Arigoni F, et al. Discovering lactic acid bacteria by genomics[J]. Antonie Van Leeuwenhoek, 2002, 82(1-4):29-58. [33] Peterbauer C, Maischberger T, Haltrich D. Food-grade gene expression in lactic acid bacteria[J]. Biotech J, 2011, 6(9):1147-1161. [34] van de Guchte M, van der Vossen JM, Kok J, et al. Construction of a lactococcal expression vector:expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis[J]. Appl Environ Microbiol, 1989, 55(1):224-228. [35] Gutiérrez J, Larsen R, Cintas LM, et al. High-level heterologous production and functional expression of the sec-dependent enterocin P from Enterococcus faecium P13 in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2006, 72(1):41-51. [36] Martín M, Gutiérrez J, Criado R, et al. Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis[J]. Appl Microbiol Biotechnol, 2007, 76(3):667-675. [37] Jiménez JJ, Borrero J, Diep DB, et al. Cloning, production, and functional expression of the bacteriocin sakacin A(SakA)and two SakA-derived chimeras in lactic acid bacteria(LAB)and the yeasts Pichia pastoris and Kluyveromyces lactis[J]. J Ind Microbiol Biotechnol, 2013, 40(9):977-993. [38] Zhou XX, Li WF, Ma GX, et al. The nisin-controlled gene expres-sion system:construction, application and improvements[J]. Biotechnol Adv, 2006, 24(3):285-295. [39] Sun C, Chen XZ, Huan LD, et al. Fusion expression of a peptide antibiotic-apidaecin gene in Lactococcus lactis[J]. Chin J Biotechnol, 2001, 17(1):20-23. [40] Horn N, Fernandez A, Dodd HM, et al. Nisin-controlled production of pediocin PA-1 and colicin V in nisin- and non-nisin-producing Lactococcus lactis strains[J]. Appl Environ Microbiol, 2004, 70(8):5030-5032. [41] Renye Jr JA, Somkuti GA, Garabal JI, et al. Heterologous production of pediocin for the control of Listeria monocytogenes in dairy foods[J]. Food Control, 2011, 22(12):1887-1892. [42] Axelsson L, Lindstad G, Naterstad K. Development of an inducible gene expression system for Lactobacillus sakei[J]. Lett Appl Microbiol, 2003, 37(2):115-120. [43] Hickey RM, Twomey DP, Ross RP, et al. Potential of the enterocin regulatory system to control expression of heterologous genes in Enterococcus[J]. J Appl Microbiol, 2003, 95(2):390-397. [44] Mathiesen G, S?rvig E, Blatny J, et al. High-level gene expression in Lactobacillus plantarum using a pheromone-regulated bacteriocin promoter[J]. Lett Appl Microbiol, 2004, 39(2):137-143. [45] S?rvig E, Gronqvist S, Naterstad K, et al. Construction of vectors for inducible gene expression in Lactobacillus sakei and L. plantarum[J]. FEMS Microbiol Lett, 2003, 229(1):119-126. [46] Driessen AJM, Nouwen N. Protein translocation across the bacterial cytoplasmic membrane[J]. Annu Rev Biochem, 2008, 77:643-667. [47] Natale P, Brüsser T, Driessen J. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane:distinct translocases and mechanisms[J]. Biophys Acta, 2008, 1778(9):1735-1756. [48] van Asseldonk M, de Vos WM, Simons G. Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous alpha amylase[J]. Mol Gen Genet, 1993, 240(3):428-434. [49] Le Loir Y, Nouaille S, Commissaire J, et al. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis[J].Appl Environ Microbiol, 2001, 67(9):4119-4127. [50] Nouaille S, Ribeiro LA, Miyoshi A, et al. Heterologous protein production and delivery systems for Lactococcus lactis[J]. Genet Mol Res, 2003, 2(1):102-111. [51] Borrero J, Jiménez JJ, Gútiez L, et al. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria[J]. J Biotechnol, 2011, 156(1):76-86. [52] 周绪霞. Apidaecin 功能基团及其作用靶位点的分析及其在乳酸乳球菌中的分泌表达[D]. 杭州:浙江大学, 2008. [53] 李朴, 文阳安, 刘靳波, 等. 抗菌肽Bactenecin7重组质粒构建及其在乳酸菌的分泌表达和活性鉴定[J].中国生物工程杂志, 2009, 29(1):70-74. [54] O'Keeffe T, Hill C, Ross RP. Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in Enterococcus faecium DPC1146[J]. Appl Environ Microb, 1999, 65:1506-1515. [55] Martínez, JM, Kok J, Sanders JW, et al. Heterologous co-production of enterocin A and pediocin PA-1 by Lactococcus lactis:detection by specific peptide-directed antibodies[J]. Appl Environ Microb, 2000, 66:3543-3549. [56] Kuipers OP, Beerthuyzen MM, de Ruyter PG, et al. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction[J]. J Biol Chem, 1995, 270:27299-27304. [57] Fink J, Merrifield RB, Boman A, et al. The chemical synthesis of cecropin D and an analog with enhanced antibacterial activity[J]. J Biol Chem, 1989, 264:6260-6267. [58] 李丽, 谯仕彦, 祝发明, 等. 蜜蜂抗菌肽Abaecin在枯草杆菌中的分泌表达[J]. 畜牧兽医学报, 2009, 40(11):1681-1685. [59] Brede DA, Faye T, Stierli MP, et al. Heterologous production of antimicrobial peptides in Propionibacterium freudenreichii[J].Appl Environ Microb, 2005, 71:8077-8084. |
[1] | 陈中元, 王玉红, 代为俊, 张艳敏, 叶倩, 刘旭平, 谭文松, 赵亮. 柠檬酸铁铵对悬浮HEK293细胞转染的影响机制探究[J]. 生物技术通报, 2023, 39(9): 311-318. |
[2] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[3] | 陈彩萍, 任昊, 龙腾飞, 何冰, 鲁兆祥, 孙坚. 大肠杆菌Nissle 1917对炎症性肠病治疗作用的研究进展[J]. 生物技术通报, 2023, 39(6): 109-118. |
[4] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[5] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[6] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[7] | 唐瑞琪, 赵心清, 朱笃, 汪涯. 大肠杆菌对木质纤维素水解液抑制物的胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 205-216. |
[8] | 李仁瀚, 张乐乐, 刘春立, 刘秀霞, 白仲虎, 杨艳坤, 李业. 基于紫色杆菌素生物合成途径的L-色氨酸生物传感器的构建[J]. 生物技术通报, 2023, 39(10): 80-92. |
[9] | 高伟欣, 黄火清, 赵晶, 张鑫, 杨宁, 杨浩萌. 应用于基因编辑的核糖核蛋白复合体的构建与活性验证[J]. 生物技术通报, 2022, 38(8): 60-68. |
[10] | 牛馨, 张莹, 王茂军, 刘文龙, 路福平, 李玉. 解淀粉芽胞杆菌不同整合位点对外源碱性蛋白酶表达的影响[J]. 生物技术通报, 2022, 38(4): 253-260. |
[11] | 王玥, 高庆华, 董聪, 罗同阳, 王庆庆. 密码子优化的吡喃糖氧化酶基因在毕赤酵母中的表达[J]. 生物技术通报, 2022, 38(4): 269-277. |
[12] | 王子琰, 王建, 张伦, 桂水清, 卢雪梅. 家蝇抗菌肽MDC对鼠伤寒沙门氏菌的抑菌稳定性研究[J]. 生物技术通报, 2022, 38(3): 149-156. |
[13] | 孙曼銮, 葛赛, 卜佳, 朱壮彦. 大肠杆菌核糖核酸酶调控机制研究[J]. 生物技术通报, 2022, 38(3): 234-245. |
[14] | 王博雅, 姜勇, 黄艳, 曹颖, 胡尚连. 慈竹纤维素合酶BeCesA4的克隆及功能分析[J]. 生物技术通报, 2022, 38(11): 185-193. |
[15] | 王小桃, 邹杭, 吴怡, 向省维, 吕华, 刘超兰, 林家富, 王欣荣, 褚以文, 宋涛. Paraglaciecola hydrolytica中新型β-琼胶酶Aga2的异源表达及酶学性质分析[J]. 生物技术通报, 2022, 38(11): 258-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||