生物技术通报 ›› 2014, Vol. 0 ›› Issue (11): 40-47.
|相兴伟,周宇芳
收稿日期:
2014-03-27
出版日期:
2014-11-07
发布日期:
2014-11-07
作者简介:
相兴伟,男,博士,研究方向:分子生物学及其基因工程利用
基金资助:
Xiang Xingwei ,Zhou Yufang
Received:
2014-03-27
Published:
2014-11-07
Online:
2014-11-07
摘要: 了解昆虫杆状病毒包涵体衍生型病毒(Occlusion-derived virus,ODV)的经口感染相关蛋白对揭示杆状病毒建立原发感染的机制、明确昆虫的先天免疫系统,以及研究控制昆虫新策略等方面具有重要意义。目前已鉴定的经口感染因子(Per os infectivity factors,PIF)包括P74、PIF1、PIF2、PIF3、PIF4、PIF5(ODV-E56)和PIF6。此外,与ODV病毒粒子经口感染有关的蛋白有ODV-E66、VP91、Ac108、ORF 145和ORF 150。综述近年来关于上述经口感染相关蛋白的结构和功能等研究成果,分析了这些蛋白的分子生物学特征。
|相兴伟,周宇芳. 昆虫包涵体衍生型病毒经口感染相关蛋白的研究进展[J]. 生物技术通报, 2014, 0(11): 40-47.
Xiang Xingwei ,Zhou Yufang. Research Progress of Proteins Associated with Per os Infectivity of the Occlusion-derived Virus[J]. Biotechnology Bulletin, 2014, 0(11): 40-47.
[1] Faulkner P, Kuzio J, Williams GV, et al. Analysis of p74, a PDV envelope protein of Autographa californica nucleopolyhedrovirus required for occlusion body infectivity in vivo[J]. J Gen Virol, 1997, 78(Pt 12):3091-3100. [2] Zhou W, Yao L, Xu H, et al. The function of envelope protein P74 from Autographa californica multiple nucleopolyhedrovirus in primary infection to host[J]. Virus Genes, 2005, 30:139-150. [3] Wang Y, Jehle JA. Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates:new insights on an old topic[J]. J Invertebr Pathol, 2009, 101:187-193. [4] Garcia-Maruniak A, Abd-Alla AM, Salem TZ, et al. Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade[J]. J Gen Virol, 2009, 90:334-346. [5] Bezier A, Annaheim M, Herbiniere J, et al. Polydnaviruses of braconid wasps derive from an ancestral nudivirus[J]. Science, 2009, 323:926-930. [6] Hou D, Zhang L, Deng F, et al. Comparative proteomics reveal fundamental structural and functional differences between the two progeny phenotypes of a baculovirus[J]. J Virol, 2013, 87:829-839. [7] Slack JM, Dougherty EM, Lawrence SD. A study of the Autographa californica multiple nucleopolyhedrovirus ODV envelope protein p74 using a GFP tag[J]. J Gen Virol, 2001, 82:2279-2287. [8] Haas-Stapleton EJ, Washburn JO, Volkman LE. P74 mediates specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to primary cellular targets in the midgut epithelia of Heliothis virescens larvae[J]. J Virol, 2004, 78:6786-6791. [9] Yao L, Zhou W, Xu H, et al. The Heliothis armigera single nucleocapsid nucleopolyhedrovirus envelope protein P74 is required for infection of the host midgut[J]. Virus Res, 2004, 104:111-121. [10] Slack JM, Lawrence SD, Krell PJ, et al. Trypsin cleavage of the baculovirus occlusion-derived virus attachment protein P74 is prerequisite in per os infection[J]. J Gen Virol, 2008, 89:2388-2397. [11] Slack JM, Lawrence SD, Krell PJ, et al. A soluble form of P74 can act as a per os infectivity factor to the Autographa californica multiple nucleopolyhedrovirus[J]. J Gen Virol, 2010, 91:915-918. [12] Peng K, van Lent JW, Vlak JM, et al. In situ cleavage of baculovirus occlusion-derived virus receptor binding protein P74 in the peroral infectivity complex[J]. J Virol, 2011, 85:10710-10718. [13] Wang L, Salem TZ, Campbell DJ, et al. Characterization of a virion occlusion-defective Autographa californica multiple nucleopolyhedrovirus mutant lacking the p26, p10 and p74 genes[J]. J Gen Virol, 2009, 90:1641-1648. [14] Peng K, van Lent JW, Boeren S, et al. Characterization of novel components of the baculovirus per os infectivity factor complex[J]. J Virol, 2012, 86:4981-4988. [15] Peng K, van Oers MM, Hu Z, et al. Baculovirus per os infectivity factors form a complex on the surface of occlusion-derived virus[J]. J Virol, 2010, 84:9497-9504. [16] Alfonso V, Lopez MG, Carrillo E, et al. Surface display of AcMNPV occlusion-derived P74 does not enhance oral infectivity of budded viruses[J]. Intervirology, 2012, 55:247-251. [17] Kikhno I, Gutierrez S, Croizier L, et al. Characterization of pif, a gene required for the per os infectivity of Spodoptera littoralis nucleopolyhedrovirus[J]. J Gen Virol, 2002, 83:3013-3022. [18] Ohkawa T, Washburn JO, Sitapara R, et al. Specific binding of Autographa californica M nucleopolyhedrovirus occlusion-derived virus to midgut cells of Heliothis virescens larvae is mediated by products of pif genes Ac119 and Ac022 but not by Ac115[J]. J Virol, 2005, 79:15258-15264. [19] Cheng CH, Liu SM, Chow TY, et al. Analysis of the complete genome sequence of the Hz-1 virus suggests that it is related to members of the Baculoviridae[J]. J Virol, 2002, 76:9024-9034. [20] Fang M, Nie Y, Wang Q, et al. Open reading frame 132 of Helicoverpa armigera nucleopolyhedrovirus encodes a functional per os infectivity factor(PIF-2)[J]. J Gen Virol, 2006, 87:2563-2569. [21] Pijlman GP, Pruijssers AJ, Vlak JM. Identification of pif-2, a third conserved baculovirus gene required for per os infection of insects[J]. J Gen Virol, 2003, 84:2041-2049. [22] Wang Y, Kleespies RG, Huger AM, et al. The genome of Gryllus bimaculatus nudivirus indicates an ancient diversification of baculovirus-related nonoccluded nudiviruses of insects[J]. J Virol, 2007, 81:5395-5406. [23] Xu HJ, Yang ZN, Wang F, et al. Bombyx mori nucleopolyhedrovirus ORF79 encodes a 28-kDa structural protein of the ODV envelope[J]. Arch Virol, 2006, 151:681-695. [24] Fang M, Nie Y, Harris S, et al. Autographa californica multiple nucleopolyhedrovirus core gene ac96 encodes a per os infectivity factor(PIF-4)[J]. J Virol, 2009, 83:12569-12578. [25] Huang H, Wang M, Deng F, et al. ORF85 of HearNPV encodes the per os infectivity factor 4(PIF4)and is essential for the formation of the PIF complex[J]. Virology, 2012, 427:217-223. [26] Braunagel SC, Russell WK, Rosas-Acosta G, et al. Determination of the protein composition of the occlusion-derived virus of Autographa californica nucleopolyhedrovirus[J]. Proc Natl Acad Sci USA, 2003, 100:9797-9802. [27] Deng F, Wang R, Fang M, et al. Proteomics analysis of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus identified two new occlusion-derived virus-associated proteins, HA44 and HA100[J]. J Virol, 2007, 81:9377-9385. [28] Perera O, Green TB, Stevens SM Jr, et al. Proteins associated with Culex nigripalpus nucleopolyhedrovirus occluded virions[J]. J Virol, 2007, 81:4585-4590. [29] Wang XF, Zhang BQ, Xu HJ, et al. ODV-associated proteins of the Pieris rapae granulovirus[J]. J Proteome Res, 2011, 10:2817-2827. [30] Xu F, Ince IA, Boeren S, et al. Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus[J]. Virus Res, 2011, 158:1-7. [31] Wang R, Deng F, Hou D, et al. Proteomics of the Autographa californica nucleopolyhedrovirus budded virions[J]. J Virol, 2010, 84:7233-7242. [32] Harrison RL, Bonning BC. Application of maximum-likelihood mo-dels to selection pressure analysis of group I nucleopolyhedrovirus genes[J]. J Gen Virol, 2004, 85:197-210. [33] Braunagel SC, He H, Ramamurthy P, et al. Transcription, translation, and cellular localization of three Autographa californica nuclear polyhedrosis virus structural proteins:ODV-E18, ODV-E35, and ODV-EC27[J]. Virology, 1996, 222,:100-114. [34] Sparks WO, Harrison RL, Bonning BC. Autographa californica multiple nucleopolyhedrovirus ODV-E56 is a per os infectivity factor, but is not essential for binding and fusion of occlusion-derived virus to the host midgut[J]. Virology, 2011, 409:69-76. [35] Xiang X, Chen L, Guo A, et al. The Bombyx mori nucleopolyhedro-virus(BmNPV)ODV-E56 envelope protein is also a per os infect-ivity factor[J]. Virus Res, 2011, 155:69-75. [36] Harrison RL, Sparks WO, Bonning BC. Autographa californica multiple nucleopolyhedrovirus ODV-E56 envelope protein is required for oral infectivity and can be substituted functionally by Rachiplusia ou multiple nucleopolyhedrovirus ODV-E56[J]. J Gen Virol, 2010, 91:1173-1182. [37] Xu HJ, Yang ZN, Zhao JF, et al. Bombyx mori nucleopolyhedrovirus ORF56 encodes an occlusion-derived virus protein and is not essential for budded virus production[J]. J Gen Virol, 2008, 89:1212-1219. [38] Nie Y, Fang M, Erlandson MA, et al. Analysis of the Autographa californica multiple nucleopolyhedrovirus overlapping gene pair lef3 and ac68 reveals that AC68 is a per os infectivity factor and that LEF3 is critical, but not essential, for virus replication[J]. J Virol, 2012, 86:3985-3994. [39] Li G, Wang J, Deng R, et al. Characterization of AcMNPV with a deletion of ac68 gene[J]. Virus Genes, 2008, 37:119-127. [40] Hong T, Braunagel SC, Summers MD. Transcription, translation, and cellular localization of PDV-E66:a structural protein of the PDV envelope of Autographa californica nuclear polyhedrosis virus[J]. Virology, 1994, 204:210-222. [41] Hong T, Summers MD, Braunagel SC. N-terminal sequences from Autographa californica nuclear polyhedrosis virus envelope proteins ODV-E66 and ODV-E25 are sufficient to direct reporter proteins to the nuclear envelope, intranuclear microvesicles and the envelope of occlusion derived virus[J]. Proc Natl Acad Sci USA, 1997, 94:4050-4055. [42] Braunagel SC, Burks JK, Rosas-Acosta G, et al. Mutations within the Autographa californica nucleopolyhedrovirus FP25K gene decrease the accumulation of ODV-E66 and alter its intranuclear transport[J]. J Virol, 1999, 73:8559-8570. [43] Braunagel SC, Williamson ST, Saksena S, et al. Trafficking of ODV-E66 is mediated via a sorting motif and other viral proteins:facilitated trafficking to the inner nuclear membrane[J]. Proc Natl Acad Sci USA, 2004, 101:8372-8377. [44] Xiang X, Chen L, Hu X, et al. Autographa californica multiple nucleopolyhedrovirus odv-e66 is an essential gene required for oral infectivity[J]. Virus Res, 2011, 158:72-78. [45] Peng K, Wu M, Deng F, et al. Identification of protein-protein interactions of the occlusion-derived virus-associated proteins of Helicoverpa armigera nucleopolyhedrovirus[J]. J Gen Virol, 2010, 91:659-670. [46] Vigdorovich V, Miller AD, Strong RK. Ability of hyaluronidase 2 to degrade extracellular hyaluronan is not required for its function as a receptor for jaagsiekte sheep retrovirus[J]. J Virol, 2007, 81:3124-3129. [47] Sugiura N, Setoyama Y, Chiba M, et al. Baculovirus envelope protein ODV-E66 is a novel chondroitinase with distinct substrate specificity[J]. J Biol Chem, 2011, 286:29026-29034. [48] Dall D, Luque T, O’Reilly D. Insect-virus relationships:sifting by informatics[J]. Bioessays, 2001, 23:184-193. [49] Wang D, Zhang CX. HearSNPV orf83 encodes a late, nonstructural protein with an active chitin-binding domain[J]. Virus Res, 2006, 117:237-243. [50] Lapointe R, Popham HJ, Straschil U, et al. Characterization of two Autographa californica nucleopolyhedrovirus proteins, Ac145 and Ac150, which affect oral infectivity in a host-dependent manner[J]. J Virol, 2004, 78:6439-6448. [51] Zhang JH, Ohkawa T, Washburn JO, et al. Effects of Ac150 on virulence and pathogenesis of Autographa californica multiple nucleopolyhedrovirus in noctuid hosts[J]. J Gen Virol, 2005, 86:1619-1627. [52] Hao B, Huang J, Sun X, et al. Variants of open reading frame Bm126 in wild-type Bombyx mori nucleopolyhedrovirus isolates exhibit functional differences[J]. J Gen Virol, 2009, 90:153-161. [53] Russell RL, Rohrmann GF. Characterization of P91, a protein asso-ciated with virions of an Orgyia pseudotsugata baculovirus[J]. Virology, 1997, 233:210-223. [54] Xiang X, Shen Y, Yang R, et al. Bombyx mori nucleopolyhedrovirus BmP95 plays an essential role in budded virus production and nucleocapsid assembly[J]. J Gen Virol, 2013, 94:1669-1679. [55] Zhu S, Wang W, Wang Y, et al. The baculovirus core gene ac83 is required for nucleocapsid assembly and per os infectivity of Autographa californica nucleopolyhedrovirus[J]. J Virol, 2013, 87:10573-10586. [56] Shi SL, Pan MH, Lu C. Characterization of Antheraea pernyi nucleopolyhedrovirus p11 gene, a homologue of Autographa californica nucleopolyhedrovirus orf108[J]. Virus Genes, 2007, 35:97-101. [57] Simon O, Palma L, Williams T, et al. Analysis of a naturally-occurring deletion mutant of Spodoptera frugiperda multiple nucleopolyhedrovirus reveals sf58 as a new per os infectivity factor of lepidopteran-infecting baculoviruses[J]. J Invertebr Pathol, 2012, 109:117-126. [58] Tang Q, Li G, Yao Q, et al. Bm91 is an envelope component of ODV but is dispensable for the propagation of Bombyx mori nucleopolyhedrovirus[J]. J Invertebr Pathol, 2013, 113:70-77. |
[1] | 赵杰, 李安, 梁刚, 靳欣欣, 潘立刚. 植物环状RNA的研究新进展[J]. 生物技术通报, 2022, 38(10): 1-9. |
[2] | 李丹, 杜梦潭, 修明霞, 刘兴健, 张志芳, 李轶女. 羊α干扰素在家蚕中的表达及抗小反刍兽疫病毒活性测定[J]. 生物技术通报, 2022, 38(1): 187-193. |
[3] | 徐海冬, 冷奇颖, PATRICIAAdu-Asiamah, 王章, 李婷, 张丽. 环状RNA的特征及其在畜禽中的研究进展[J]. 生物技术通报, 2018, 34(11): 56-69. |
[4] | 刘兴健, 李皓洋, 胡小元, 张志芳, 易咏竹, 李轶女. 猪γ干扰素在家蚕中的表达和抗病毒活性检测[J]. 生物技术通报, 2016, 32(1): 144-148. |
[5] | 李皓洋, 胡小元, 易咏竹, 杨鑫, 张志芳, 李轶女. 犬α干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性的测定[J]. 生物技术通报, 2015, 31(6): 216-220. |
[6] | 邓帅,张婷婷,王茹茹,刘宇,张元湖. 植物非细胞自主性小RNA分子研究进展[J]. 生物技术通报, 2015, 31(10): 16-23. |
[7] | 林波, 孟海玲, 吴勇, 邴晖, 长孙东亭, 罗素兰. 静水椎螺乙酰胆碱结合蛋白在Bac-to-Bac系统中的表达、纯化与结晶[J]. 生物技术通报, 2014, 0(8): 126-131. |
[8] | 李田田, 杨灵, 易咏竹, 沈桂芳, 张志芳, 李轶女. 鸡α干扰素在家蚕中的表达及抗病毒活性测定[J]. 生物技术通报, 2014, 0(3): 171-176. |
[9] | 万婧, 相兴伟, 江玲丽, 周向阳. 杆状病毒-昆虫细胞表达系统在复合体重组表达应用中的研究进展[J]. 生物技术通报, 2014, 0(2): 7-14. |
[10] | 徐影,赵雪,于源华. 果糖缬氨酸氧化酶在sf9细胞中的表达[J]. 生物技术通报, 2013, 0(10): 160-164. |
[11] | 王宗尧;史子学;刘阳;朱紫祥;吴德峰;王水明;刘学辉;马志永;. EBOV-Z和MARV的NP基因在杆状病毒表达系统的表达及反应原性鉴定[J]. , 2012, 0(09): 104-108. |
[12] | 刘拂晓;柳增善;王志亮;. 杆状病毒表达系统——有效的VLP构建工具[J]. , 2012, 0(06): 25-31. |
[13] | 万婧;周向阳;方维焕;. 杆状病毒在载体疫苗中应用的研究进展[J]. , 2012, 0(03): 35-41. |
[14] | 崔馨元;薛良义;. 大黄鱼肝细胞肿瘤相关抗原-127基因克隆及分子特征分析[J]. , 2011, 0(11): 125-129. |
[15] | 牛京京;张守纯;金谷;于宁;. 线粒体基因及其Cyt b基因与昆虫分子系统学研究[J]. , 2011, 0(04): 52-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||