生物技术通报 ›› 2014, Vol. 0 ›› Issue (11): 62-72.
董秀芹1,袁红莉2,高同国3,
收稿日期:
2014-03-20
出版日期:
2014-11-07
发布日期:
2014-11-07
作者简介:
董秀芹,女,副教授,研究方向:木质素降解
Dong Xiuqin1,Yuan Hongli2,Gao Tongguo3
Received:
2014-03-20
Published:
2014-11-07
Online:
2014-11-07
摘要: 生物质的高效综合利用已成为全球关注的热点问题。生物质的主要成分是木质素、纤维素和半纤维素,其利用的关键是如何去除木质素,从而提高纤维素和半纤维素的得率。其中利用真菌的生物预处理方法因条件温和、无二次污染等优点符合全球经济可持续发展需要,受到研究者的普遍关注。综述了近年国内外真菌分泌的主要木质素降解酶,包括木质素过氧化物酶(LiP)、锰过氧化物酶(MnP)、漆酶(laccase)和多功能过氧化物酶(VP)的主要特点,总结了木质素降解相关酶的基因工程、基因组学的研究成果,并对其发展前景进行了展望。
董秀芹,袁红莉,高同国. 木质素降解酶及相关基因研究进展[J]. 生物技术通报, 2014, 0(11): 62-72.
Dong Xiuqin,Yuan Hongli,Gao Tongguo. Progress in Studies of Ligninolytic Enzymes and Genes[J]. Biotechnology Bulletin, 2014, 0(11): 62-72.
[1]Fernández-Fueyo E, Ruiz-Due?as FJ, Miki Y, et al. Lignin-degrading peroxidases from genome of selective ligninolytic fungus Ceriporiopsis subvermispora[J]. The Journal of Biological Chemistry, 2012, 287(20):16903-16916. [2]Hendriks AT, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1):10-18. [3]Strong PJ, Claus H. Laccase:a review of its past and its future in bioremediation[J]. Critical Reviews in Environmental Science and Technology, 2011, 41(4):373-434. [4]Elisashvili V, Kachlishvili E. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes[J]. Journal of Biotechnology, 2009, 144(1):37-42. [5] Miki Y, Ichinose H, Wariishi H. Molecular characterization of lignin peroxidase from the white-rot basidiomycete Trametes cervina:a novel fungal peroxidase[J]. FEMS Microbiology Letters, 2010, 304(1):39-46. [6]Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy[J]. Biotechnology Advances, 2012, 30(6):1458-1480. [7]Singh D, Chen SL. The white-rot fungus Phanerochaete chrysospor-ium:conditions for the production of lignin-degrading enzymes[J]. Applied Microbiology and Biotechnology, 2008, 81(3):399-417. [8]Lundell TK, M?kel? MR, Hildén K. Lignin-modifying enzymes in filamentous basidiomycetes—ecological, functional and phylogenetic review[J]. Journal of Basic Microbiology, 2010, 50(1):5-20. [9]Yang JS, Ni JR, Yuan HL, et al. Biodegradation of three different wood chips by Pseudomonas sp. PKE117[J]. International Biodeterioration and Biodegradation, 2007, 60(2):90-95. [10]Heinfling A, Ruiz-Due?as FJ, Martínez MJ, et al. A study on reducing substrates of manganese oxidizing peroxidases from Pleurotus eryngii and Bjerkandera adusta[J]. FEBS Letters, 1998, 428(3):141-146. [11]Cheng XB, Jia R, Li PS, et al. Purification of a new manganese peroxidase of the white-rot fungus Schizophyllum sp. F17 and decolorization of azo dyes by the enzyme[J]. Enzyme and Microbial Technology, 2007, 41(3):258-264. [12]Patel DS, Aithal RK, Krishna G, et al. Nano-assembly of manganese peroxidase and lignin peroxidase from P. chrysosporium for biocatalysis in aqueous and non-aqueous media[J]. Colloids and Surfaces B:Biointerfaces, 2005, 43(1):13-19. [13]Nascimento HJ, Silva JG. Purification of lignin peroxidase isoforms from Streptomyces viridosporus T7A by hydrophobic based chromatographies[J]. World Journal of Microbiology and Biotechnology, 2008, 24(9):1973-1975. [14] Morgenstern I, Klopman S, Hibbett DS. Molecular Evolution and diversity of lignin degrading heme peroxidases in the agaricomycetes[J]. Journal of Molecular Evolution, 2008, 66(3):243-257. [15]Bonugli-Santos RC, Durrant LR, Silva MD, et al. Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi[J]. Enzyme and Microbial Technology, 2010, 46(1):32-37. [16]Raghukumar C, D’souza TM, Thorn RG, et al. Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment[J]. Applied Microbiology and Biotechnology, 1999, 65(5):2103-2111. [17]Hofrichter M, Vares T, Kalsi M, et al. Production of ligninolytic enzymes and organic acids, and mineralization of 14C-labeled lignin during solid-state fermentation of wheat straw with the white-rot fungus Nematoloma frowardii[J]. Applied and Environmental Microbiology, 1999, 65(5):1864-1870. [18] Martinez D, Larrondo LF, Putnam N, et al. Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78[J]. Nature Biotechnology, 2004, 22(6):695-700. [19]Hirai H, Sugiura M, Kawai S, et al. Characteristics of novel lignin peroxidases produced by white-rot fungus Phanerochaete sordida YK-624[J]. FEMS Microbiology Letters, 2005, 246(1):19-24. [20] Vares T, Kalsi M, Hatakka A. Lignin peroxidases, manganese peroxidases, and other ligninolytic enzymes produced by Phlebia radiate during solid-state fermentation of wheat straw[J]. Applied and Environmental Microbiology, 1995, 61(10):3515-3520. [21] Urzúa U, Larrondo LF, Lobos S, et al. Oxidation reactions catalyzed by manganese peroxidase isoenzymes from Ceriporiopsis subvermispora[J]. FEBS Letters, 1995, 371(2):132-136. [22]Tsukihara T, Honda Y, Sakai R, et al. Mechanism for oxidation of high-molecular-weight substrates by a fungal versatile peroxidase, MnP2[J]. Applied and Environmental Mocrobiology, 2008, 74(9):2873-2881. [23]Sundaramoorthy M, Youngs HL, Gold MH, et al. High-resolution crystal structure of manganese peroxidase:substrate and inhibitor complexes[J]. Biochemistry, 2005, 44(17):6463-6470. [24] Iqbal HM, Asgher M. Characterization and decolorization applica-bility of xerogel matrix immobilized manganese peroxidase produced from Trametes versicolor IBL-04[J]. Protein and Peptide Letters, 2013, 20(5):591-600. [25]Lankinen VP, Bonnen AM, Anton LH, et al. Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus[J]. Applied Microbiology and Biotechnology, 2001, 55(2):170-176. [26]Steffen KT, Hofrichter M, Hatakka A. Purification and characteriza-tion of manganese peroxidases from the litter decomposing basidio-mycetes Agrocybe praecox and Stropharia coronilla[J]. Enzyme and Microbial Technology, 2002, 30(4):550-555. [27]Ziegenhagen D, Hofrichter M. A simple and rapid method to gain high amounts of manganese peroxidase with immobilized mycelium of the agaric white-rot fungus Clitocybula dusenii[J]. Applied Microbiology and Biotechnology, 2000, 53(5):553-557. [28]Sklenara J, Niku-Paavola ML, Santos S, et al. Isolation and characterization of novel pI 4. 8 MnP isoenzyme from white-rot fungus Irpex lacteus[J]. Enzyme and Microbial Technology, 2010, 46(7):550-556. [29]Boer CG, Obici L, de Souza CGM, et al. Purification and some properties of Mn peroxidase from Lentinula edodes[J]. Process Biochemistry, 2006, 41(5):1203-1207. [30]Petruccioli M, Frasconi M, Quaratino D, et al. Kinetic and redox properties of MnP II, a major manganese peroxidase isoenzyme from Panus tigrinus CBS 577. 79[J]. Journal of Biological Inorganic Chemistry, 2009, 14(8):1153-1163. [31]Rubia T, De la Linares A, Pérez J, et al. Characterization of manga-nese-dependent peroxidase isoenzymes from the ligninolytic fungus Phanerochaete flavido-alba[J]. Research in Microbiology, 2002, 153(8):547-554. [32]Hakala TK, Lundell T, Galkin S, et al. Manganese peroxidases, laccases and oxalic acid from the selective white-rot fungus Physisporinus rivulosus grown on spruce wood chips[J]. Enzyme and Microbial Technology, 2005, 36(4):461-468. [33]Martínez MJ, Ruiz-Due?as GF, Martínez AT. Purification and catalytic properties of two manganese isoenzymes from Pleurotus eryngii[J]. European Journal of Biochemistry, 1996, 237(2):424-432. [34]Giardina P, Palmieri G, Fontanella B, et al. Manganese peroxidase isoenzymes produced by Pleurotus ostreatus grown on wood sawdust[J]. Archives Biochemistry and Biophysics, 2000, 376(1):171-179. [35]Schlosser D, H?fer C. Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase[J]. Applied Microbiology and Biotechnology, 2002, 68(7):3514-3521. [36]Bermek H, Yaz?c? H, ?ztürk H, et al. Purification and characterization of manganese peroxidase from wood-degrading fungus Trichophyton rubrum LSK-27[J]. Enzyme and Microbial Technology, 2004, 35(1):87-92. [37]Liew CY, Husaini A, Hussain H. Lignin biodegradation and ligninolytic enzyme studiesduring biopulping of Acacia mangium wood chips by tropical white rot fungi[J]. World Journal of Microbiol Biotechnol, 2011, 27(10):1457-1468. [38]Baldrian P. Fungal laccases-occurrence and properties[J]. FEMS Microbiology Reviews, 2006, 30(2):215-242. [39] Camarero S, Ibarra D, Martínez MJ, et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes[J]. Applied and Environmental Microbiology, 2005, 71(4):1775-1784. [40] Kiiskinen LL, Viikari L, Kruus K. Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces[J]. Applied Microbiology and Biotechnology, 2002, 59(2-3):198-204. [41] Souza CGM, Peralta RM. Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmona-rius on wheat bran solid state medium[J]. Journal of Basic Micr-obiology, 2003, 43(4):278-286. [42] Aslam MS, Aishy A, Samra ZQ, et al. Identification, purification and characterization of a novel extracellular laccase from Cladosporium Cladosporioides[J]. Biotechnology & Biotechnological Equipment, 2012, 26(6):3344-3350. [43]Koroleva OV, Gavrilova VP, Stepanova EV, et al. Production of lignin modifying enzymes by co-cultivated White-Rot Fungi Cerrena maxima and Coriolus hirsutus and characterization of laccase from Cerrena maxima[J]. Enzyme and Microbial Technology, 2002, 30(4):573-580. [44]Salas C, Lobos S, Larrain J, et al. Properties of laccase isoenzymes produced by the basidiomycetes Ceriporiopsis subvermispora[J]. Biotechnology and Applied Biochemistry, 1995, 21(3):323-333. [45]Lisova ZA, Lisov AV, Leontievsky AA. Two laccase isoforms of the basidiomycete Cerrena unicolor VKMF-3196:Induction, isolation and properties[J]. Journal of Basic Microbiology, 2010, 50(1):72-82. [46]Schneider P, Caspersen MB, Mondorf K, et al. Characterization of a Coprinus cinereus laccase[J]. Enzyme and Microbial Technology, 1999, 25(6):502-508. [47]Saparrat MCN, Guillén F, Arambarri AM, et al. Induction, isolation, and characterization of two laccases from the white rot basidiomycete Coriolopsis rigida[J]. Applied Microbiology and Biotechnology, 2002, 68(4):1534-1540. [48]Do Rosário Freixo M, Karmali A, Arteiro JM. Production of polygalacturonase from Coriolus versicolor grown on tomato pomace and its chromatographic behaviour on immobilized metal chelates[J]. Journal of Industrial Microbiology and Biotechnology, 2008, 35(6):475-484. [49]Zhang GQ, Wang YF, Zhang XQ, et al. Purification and characterization of a novel laccase from the edible mushroom Clitocybe maxima[J]. Process Biochemistry, 2010, 45(5):627-633. [50]Perie FH, Reddy GVB, Blackburn NJ, et al. Purification and characterization of laccases from the white-rot basidiomycete Dichomitus squalens[J]. Archives of Biochemistry and Biophysics, 1998, 353(2):349-355. [51]Wu YR, Luo ZH, Chow RKK, et al. Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2[J]. Bioresource Technology, 2010, 101(24):9772-9777. [52]D’Souza TM, Merritt CS, Reddy CA. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum[J]. Applied and Environmental Microbiology, 1999, 65(12):5307-5313. [53]Nagai M, Sato T, Watanabe H, et al. Purification and characteriza-tion of an extracellular laccase from the edible mushroom Lentinula edodes, and decolorization of chemically different dyes[J]. App-lied Microbiology and Biotechnology, 2002, 60(3):327-335. [54]Iyer G, Chattoo BB. Purification and characterization of laccase from the rice blast fungus Magnaporthe grisea[J]. FEMS Microbiology Letters, 2003, 227(1):121-126. [55]Schückel J, Matura A, van Pée KH. One-copper laccase-related enzyme from Marasmius sp.:purification, characterization and bleaching of textile dyes[J]. Enzyme and Microbial Technology, 2011, 48(3):278-284. [56]Farnet AM, Criquet S, Pocachard E, et al. Purification of a new isoform of laccase from a Marasmius quercophilus strain isolated from a cork oak litter(Quercus suber L. )[J]. Mycologia, 2002, 94(5):735-740. [57]Qiu WH, Chen HZ. An alkali-stable enzyme with laccase activity from entophytic fungus and the enzymatic modification of alkali lignin[J]. Bioresource Technology, 2008, 99(13):5480-5484. [58]Quaratino D, Federici F, Petruccioli M, et al. Production, purifica-tion and partial characterisation of a novel laccase from the white-rot fungus Panus tigrinus CBS 577. 79[J]. Antonie van Leeu-wenhoek, 2007, 91(1):57-69. [59]Sathishkumar P, Murugesan K, Palvannan T. Production of laccase from Pleurotus florida using agro-wastes and efficient decolorization of Reactive blue 198[J]. Journal of Basic Microbiology, 2010, 50(4):360-367. [60]Mansur M, Arias ME, Copa-Pati?o JL, et al. The white-rot fungus Pleurotus ostreatus secretes laccase isozymes with different substr-ate specificities[J]. Mycologia, 2003, 95(6):1013-1020. [61]Kalme S, Jadhav S, Jadhav M, et al. Textile dye degrading laccase from Pseudomonas desmolyticum NCIM 2112[J]. Enzyme and Microbial Technology, 2009, 44(2):65-71. [62]Jaouaní A, Guillén F, Penninckx MJ, et al. Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater[J]. Enzyme and Microbial Technology, 2005, 36(4):478-486. [63]Vite-Vallejo O, Palomares LA, Dantán-González E, et al. The role of N-glycosylation on the enzymatic activity of a Pycnoporus sangu-ineus laccase[J]. Enzyme and Microbial Technology, 2009, 45(3):233-239. [64]Di Nardo C, Cinquegrana A, Papa S, et al. Laccase and peroxidase isoenzymes during leaf litter decomposition of Quercus ilex in a Mediterranean ecosystem[J]. Soil Biology & Biochemistry, 2004, 36(10):1539-1544. [65]Cambria MT, Cambria A, Ragusa S, et al. Production, purification and properties of an extracellular laccase from Rigidoporus lignosus[J]. Protein Expression and Purification, 2000, 18(2):141-147. [66]Shleev SV, Morozova O, Nikitina O, et al. Comparison of physico-chemical characteristics of four laccases from different basidiomycetes[J]. Biochimie, 2004, 86(9-10):693-703. [67]Galhaup C, Goller S, Peterbauer CK, et al. Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions[J]. Microbiology, 2002, 148(7):2159-2169. [68]Jung H, Xu F, Li KC. Purification and characterization of laccase from wood-degrading fungus Trichophyton rubrum LKY-7[J]. Enzyme and Microbial Technology, 2002, 30(2):161-168. [69]Chakroun H, Mechichi T, Martinez MJ, et al. Purification and cha-racterization of a novel laccase from the ascomycete Trichoderma atroviride:Application on bioremediation of phenolic compounds[J]. Process Biochemistry, 2010, 45(4):507-513. [70]Sadhasivam S, Savitha S, Swaminathan K, et al. Production, purification and characterization of mid-redox potential laccase from a newly isolated Trichoderma harzianum WL1[J]. Process Biochemistry, 2008, 43(7):736-742. [71]Liers C, Ullrich R, Pecyna M, et al. Production, purification and partial enzymatic and molecular characterization of a laccase from the wood-rotting ascomycete Xylaria polymorpha[J]. Enzyme and Microbial Technology, 2007, 41(6):785-793. [72] Ruiz-Due?as FJ, Morales M, García E, et al. Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases[J]. Journal of Experimental Botany, 2009, 60(2):441-52. [73]陈敏, 姚善泾, 张虹, 等. 食用菌杏鲍菇中一个多功能氧化酶纯化和特性研究[J]. 中国化学工程, 2010, 18(5):824-829. [74]Busse N, Wagner D, Kraume M, et al. Reaction kinetics of versatile peroxidase for the degradation of lignin compounds[J]. American Journal of Biochemistry and Biotechnology, 2013, 9(4):365-394. [75]Bernini C, Pogni R, Basosi R, et al. Prediction of hydrogen-bonding networks around tyrosyl radical in P. eryngii versatile peroxidase W164Y variants:a QM/MM MD study[J]. Molecular Simulation, 2013, DOI:10. 1080/08927022. 2013. 822967. [76]Menon V, Rao M. Trends in bioconversion of lignocellulose:Biofuels, platform chemicals & biorefinery concept[J]. Progress in Energy and Combustion Science, 2012, 38(4):522-550. [77]Irie T, Honda Y, Watanabe T, et al. Homologous expression of recombinant manganese peroxidase genes in ligninolytic fungus Pleurotus ostreatus[J]. Applied Microbiology and Biotechnology, 2001, 55(5):566-570. [78] Johnson TM, Pease EA, Li JK, et al. Production and characterization of recombinant lignin peroxidase isozyme H2 from Phanerochaete chrysosporium using recombinant baculovirus[J]. Archives Biocheistry and Biophysics, 1992, 296(2):660-666. [79]Nie GJ, Reading NS, Aust SD. Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli[J]. Biochemical and Biophysical Research Communications, 1998, 249(1):146-150. [80]Stewart P, Whitwam RE, Kersten PJ, et al. Efficient expression of Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae[J]. Applied and Environmental Microbiology, 1996, 62(3):860-864. [81] Conesa A, van den Hondel CAMJJ, Punt PJ. Studies on the production of fungal peroxidases in Aspergillus niger[J]. Applied and Environmental Microbiology, 2000, 66(7):3016-3023. [82]Larrondo LF, Lobos S, Stewart P, et al. Isoenzyme multiplicity and characterization of recombinant manganese peroxidases from Ceriporiopsis subvermispora and Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2001, 67(5):2070-2075. [83]Wang HK, Lu FP, Sun YF, et al. Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica[J]. Biotechnology Letters, 2004, 26(20):1569-1573. [84]Mohor?i? M, Ben?ina M, Friedrich J, et al. Expression of soluble versatile peroxidase of Bjerkandera adusta in Escherichia coli[J]. Bioresource Technology, 2009, 100(2):851-858. [85]Janusz G, Kucharzyk KH, Pawlik A, et al. Fungal laccase, manganese peroxidase and lignin peroxidase:gene expression and regulation[J]. Enzyme and Microbial Technology, 2013, 52(1):1-12. [86]Minami M, Kureha O, Mori M, et al. Long serial analysis of gene expression for transcriptome profiling during the initiation or lignolytic enzymes production in Phanerochaete chrysosporium[J]. Applied Microbiology and Biotechnology, 2007, 75(3):609-618. [87] Kotik M. Novel genes retrieved from environmental DNA by polymerase chain reaction:current genome-walking techniques for future metagenome applications[J]. Journal of Biotechnology, 2009, 144(2):75-82. [88]Xu MX, Xiao X, Wang FP. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment[J]. Extremophiles, 2008, 12(2):255-262. [89]Fernández-Fueyo E, Ruiz-Due?as FJ, Ferreira P, et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis[J]. Proceedings of the National Academy of Sciences, 2012, 109(14):5458-5463. [90]Ran YH, Che FZ, Chen WQ. Co-Immobilized lignin peroxidase and manganese peroxidase from coriolus versicolor capable of decolorizing molasses waste water[J]. Applied Mechanics and Materials, 2012, 138-139:1067-1071. [91]Wang HL, Yu GL, Li P, et al. Overproduction of Trametes versicolor laccase by making glucose starvation using yeast[J]. Enzyme and Microbial Technology, 2009, 45(2):146-149. [92]Yu GJ, Wang M, Huang J, et al. Deep insight into the ganoderma lucidumby comprehensive analysis of its transcriptome[J]. PLoS ONE, 2012, 7(8):44031-44040. [93]Salvachúa D, Martínez AT, Tien M, et al.Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment[J].Biotechnology for Biofuels, 2013, 6:115-129. |
[1] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[2] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[3] | 刘媛媛, 魏传正, 谢永波, 仝宗军, 韩星, 甘炳成, 谢宝贵, 严俊杰. 金针菇II类过氧化物酶基因在子实体发育与胁迫应答过程的表达特征[J]. 生物技术通报, 2023, 39(11): 340-349. |
[4] | 鲁兆祥, 王夕冉, 连新磊, 廖晓萍, 刘雅红, 孙坚. 基于功能宏基因组学挖掘抗生素耐药基因研究进展[J]. 生物技术通报, 2022, 38(9): 17-27. |
[5] | 王雨辰, 丁尊丹, 关菲菲, 田健, 刘国安, 伍宁丰. 耐热漆酶ba4基因鉴定与酶学性质分析[J]. 生物技术通报, 2022, 38(8): 252-260. |
[6] | 贾晨波, 苏一黄, 马秀梅, 王春利, 徐春燕. 端梗霉Z45产漆酶培养基的优化及其对染料的脱色[J]. 生物技术通报, 2022, 38(6): 252-260. |
[7] | 王宇蕴, 赵兵, 马丽婷, 李兰, 邓亚琴, 徐智. 堆肥腐殖化过程及微生物驱动机制[J]. 生物技术通报, 2022, 38(5): 22-28. |
[8] | 毛国涛, 王杰, 王凯, 王方园, 曹乐言, 张宏森, 宋安东. 水生栖热菌漆酶TaLac的性质分析及对孔雀石绿染料的脱除[J]. 生物技术通报, 2022, 38(4): 261-268. |
[9] | 韩东晶, 王志花, 周宁, 刘国庆, 杨少华, 汪文君. 白蚁菌圃中木质素降解菌的筛选及降解效果[J]. 生物技术通报, 2022, 38(3): 113-120. |
[10] | 付雅丽, 彭万里, 林双君, 邓子新, 梁如冰. 香茅醇假单胞菌SJTE-3的短链脱氢酶SDR-X1的克隆及酶性质测定[J]. 生物技术通报, 2022, 38(3): 121-129. |
[11] | 马青云, 江旭, 李情情, 宋金龙, 周义清, 阮志勇. 烟嘧磺隆降解菌Chryseobacterium sp. LAM-M5的分离、鉴定及其降解机理研究[J]. 生物技术通报, 2022, 38(2): 113-122. |
[12] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[13] | 张泽颖, 范清锋, 邓云峰, 韦廷舟, 周正富, 周建, 王劲, 江世杰. 一株高产脂肪酶菌株WCO-9全基因组测序及比较基因组分析[J]. 生物技术通报, 2022, 38(10): 216-225. |
[14] | 孙淑芳, 骆永丽, 李春辉, 金敏, 胥倩. UPLC-MS/MS测定小麦茎秆木质素单体交联结构的方法[J]. 生物技术通报, 2022, 38(10): 66-72. |
[15] | 田嘉慧, 封佳丽, 卢俊桦, 毛林静, 胡著然, 王莹, 楚杰. 一色齿毛菌漆酶LacT-1的分离纯化与性质研究[J]. 生物技术通报, 2021, 37(8): 186-194. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||