生物技术通报 ›› 2015, Vol. 31 ›› Issue (3): 1-9.doi: 10.13560/j.cnki.biotech.bull.1985.2015.04.001
• 综述与专论 • 下一篇
王艳蓉1, 张治国2, 吴金霞2
收稿日期:
2014-11-12
出版日期:
2015-03-16
发布日期:
2015-03-16
作者简介:
王艳蓉,女,硕士研究生,研究方向:草业生物技术;E-mail:wangyanrong915@163.com
基金资助:
Wang Yanrong1 Zhang Zhiguo2 Wu Jinxia2
Received:
2014-11-12
Published:
2015-03-16
Online:
2015-03-16
摘要: 干旱、盐碱、高温和寒冷等逆境制约着植物的生长发育。植物中含有一组亲水性极强的蛋白,称为胚胎发育晚期丰富蛋白(late embryogenesis abundant,LEA蛋白),在自然条件下这种蛋白质一般在种子发育晚期积累,其对多种非生物胁迫具有很强的抵抗能力,并能响应干旱、寒冷、高盐和ABA等信号。LEA蛋白通过保持细胞渗透压、保护细胞膜结构、作为分子伴侣保护其他蛋白等方式维持植物正常的代谢反应。就LEA蛋白的分类、结构、抗逆机制以及在植物抗逆改良中的应用进行了简要综述。
王艳蓉, 张治国, 吴金霞. LEA蛋白及其在植物抗逆改良中的应用[J]. 生物技术通报, 2015, 31(3): 1-9.
Wang Yanrong, Zhang Zhiguo, Wu Jinxia. LEA Protein and Its Application in Improvement of Stress Tolerance in Plants[J]. Biotechnology Bulletin, 2015, 31(3): 1-9.
[1] Bartels D, Sunkar R. Drought and salt tolerance[J]. Plant Crit Rev Plant Sci, 2005, 24(1):23-58. [2] Dure L, Greenway SC, Galau GA. Developmental biochemistry of cotton seed embryogenesis and germination:changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis[J]. Biochemistry, 1981, 20(14):4162-4168. [3] Honjoh K, Yoshimoto M, Joh T, et al. Isolation and characterization of hardening-induced proteins in Chlorella vulgaris C-27:identifi-cation of late embryogenesis abundant proteins[J]. Plant Cell Physiol, 1995, 36(8):1421-1430. [4] Saavedra L, Svensson J, Carballo V, et al. A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance[J]. Plant J, 2006, 45(2):237-249. [5] Raghavan V, Kamalay JC. Expression of two cloned Mrna sequences during development and germination of spores of the sensitive fern, Onoclea sensibilis L. [J]. Planta, 1993, 189(1):1-9. [6] Stacy RAP, Aalen RB. Identification of sequence homology between the internal hydrophilic repeated motifs of Group1 late-embryogenesis- abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis[J]. Planta, 1998, 206(3):476-478. [7] Thomashow MF. Role of cold responsive genes in plant freezing tolerance[J]. Plant Physiol, 1998, 118(1):1-8. [8] Baker J, Van Dennsteele C, Dure L. Sequence and characterization of 6Leaproteins and their genes from cotton[J]. Plant Mol Biol, 1988, 11(3):277-291. [9] Dure L III, Crouch M, Harada J, et al. Common amino acid sequence domains among the LEA proteins of higher plants[J]. Plant Mol Biol, 1989, 12(5):475-486. [10] Close TJ. Dehydrins:a commonality in the response of plants to dehydration and low temperature[J]. Physiol Plant, 1997, 100(2):291-296. [11] Dure LIII. A repeating 11-mer amino acid motif and plant desiccation[J]. Plant J, 1993, 3(3):363-369. [12] Bray EA. Molecular responses to water deficit[J]. Plant Physiol, 1993, 103(4):1035-1040. [13] Wise MJ. LEAping to conclusions:a computational reanalysis of late embryogenesis abundant proteins and their possible roles[J]. BMC Bioinformatics, 2003, 4:52. [14] Soulages JL, Kim K, Walters C, et al. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis abundant protein from soybean[J]. Plant Physiol, 2002, 128(3):822-832. [15] Goyal K, Walton LJ, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress[J]. Biochem J, 2005, 388(Pt-1):151-157. [16] Campos F, Cuevas-Velazquez C, Fares MA, et al. Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains[J]. Mol Genet Genomics, 2013, 288(10):503-517. [17] Iturriaga G, Cushman MAF, Cushman JC. An EST catalogue from the resurrection plant Selaginella lepidophylla reveals abiotic stress-adaptive genes[J]. Plant Sci, 2006, 170(6):1173-1184. [18] Wolkers WF, McCready S, Brandt WF, et al. Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro[J]. Biochim Biophys Acta, 2001, 1544(1-2):196-206. [19] Tolleter D, Jaquinod M, Mangavel C, et al. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation[J]. Plant Cell, 2007, 19(5):1580-1589. [20] Battista JR, Park MJ, McLemore AE. Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation[J]. Cryobiology, 2001, 43(2):133-139. [21] Gal TZ, Glazer I, Koltai H. An LEA group 3 family member is involved in survival of C. elegans during exposure to stress[J]. FEBS Lett, 2004, 577(1-2):21-26. [22] Kikawada T, Nakahara Y, Kanamori Y, et al. Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid[J]. Biochem Biophys Res Commun, 2006, 348(1):56-61. [23] Hand SC, Jones D, Menze MA, et al. Life without water:expression of plant LEA genes by an anhydrobiotic arthropod[J]. J Exp Zool Part A Ecol Genet Physiol, 2007, 307(1):62-66. [24] Siddiqui NU, Chung HJ, Thomas TL, et al. Abscisic acid-dependent and -independent expression of the carrot late-embryogenesis-abundant-class gene Dc3 in transgenic tobacco seedlings[J]. Plant Physiol, 1998, 118(4):1181-1190. [25] NDong C, Danyluk J, Wilson KE, et al. Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins:molecular characterization and functional analyses[J]. Plant Physiol, 2002, 129(3):1368-1381. [26] Roberts JK, DeSimone NA, Lingle WL, et al. Cellular concentrations and uniformity of cell-type accumulation of two LEA proteins in cotton embryos[J]. Plant Cell, 1993, 5(7):769-780. [27] Liu Y, Wang L, Xing X, et al. ZmLEA3, a multifunctional group 3 LEA protein from maize Zea mays L, is involved in biotic and abiotic stresses[J]. Plant Cell Physiol, 2013, 54(6):944-959. [28] Marunde MR, Samarajeewa DA, Anderson J, et al. Improved tolerance to salt and water stress in Drosophila melanogaster cells conferred by late embryogenesis abundant protein[J]. J. Insect Physiol, 2013, 59(4):377-386. [29] Shih MD, Lin SD, Hsieh JS, et al. Gene cloning and characterization of a soybean(Glycine max L. )LEA protein, GmPM16[J]. Plant Mol Biol, 2004, 56(5):689-703. [30] Zimmermann P, Hirsch-Hoffmann M, Hennig L, et al. GENEVES-TIGATOR:Arabidopsis microarray database and analysis toolbox[J]. Plant Physiol, 2004, 136(1):2621-2632. [31] Tai HH, Tai GC, Beardmore T. Dynamic histone acetylation of late embryonic genes during seed germination[J]. Plant Mol Biol, 2005, 59(6):909-925. [32] Reyes JL, Rodrigo MJ, Colmenero-Flores JM, et al. Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro[J]. Plant Cell Environ, 2005, 28(6):709-718. [33] Senthil-Kumar M, Udayakumar M. High-throughput virus-induced gene-silencing approach to assess the functional relevance of a moisture stress-induced cDNA homologous to Lea4[J]. J Exp Bot, 2006, 57(10):2291-2302. [34] Colmenero-Flores JM, Campos F, Garciarrubio A, et al. Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit:identification of a novel late embryogenesis abundant-like protein[J]. Plant Mol Biol, 1997, 35(4):393-405. [35] Goldgur Y, Rom S, Ghirlando R, et al. Desiccation and zinc binding induce transition of tomato abscisic acid stress ripening 1, a water stress- and salt stress-regulated plant-specific protein, from unfolded to folded state[J]. Plant Physiol, 2007, 143(2):617-628. [36] Padmanabhan V, Dias DM, Newton RJ. Expression analysis of a gene family in loblolly pine(Pinus taeda L. )induced by water deficit stress[J]. Plant Mol Biol, 1997, 35(6):801-807. [37] Shen G, Pang Y, Wu W, et al. Molecular cloning, characterization and expression of a novel Asr gene from Ginkgo biloba[J]. Plant Physiol Biochem, 2005, 43(9):836-843. [38] Hara M, Shinoda Y, Tanaka Y, et al. DNA binding of citrus dehydrin promoted by zinc ion[J]. Plant Cell Environ, 2009, 32(2):532-541. [39] Kalifa Y, Gilad A, Konrad Z, et al. The water- and salt-stress-regulated Asr1(abscisic acid stress ripening)gene encodes a zinc-dependent DNA-binding protein[J]. Biochem J, 2004, 381(Pt2):373-378. [40] Dosztányi Z, Csizmók V, Tompa P, et al. The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins[J]. J Mol Biol, 2005, 347(4):827-839. [41] Olvera-Carrillo Y, Luis Reves J, Covarrubias AA. Late embryogene-sis abundant proteins:versatile players in the plant adaptation to water limiting environments[J]. Plant Signal Behav, 2011, 6(4):586-589. [42] Wise MJ, Tunnacliffe A. POPP the question:what do LEA proteins do?[J]. Trends Plant Sci, 2004, 9(1):13-17. [43] Hara M, Terashima S, Fukaya T, et al. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco[J]. Planta, 2003, 217(2):290-298. [44] Hara M, Fujinaga M, Kuboi T. Radical scavenging activity and oxidative modification of citrus dehydrin[J]. Plant Physiol Biochem, 2004, 42(7-8):657-662. [45] Hanin M, Brini F, Ebel CH, et al. Plant dehydrins and stress tolerance:versatile proteins for complex mechanisms[J]. Plant Signal Behav, 2011, 6(10):1503-1509. [46] Steponkus PL, Uemura M, Joseph RA, et al. Mode of actionof theCOR15ageneon thefreezingtoleranceofArabidopsis thaliana[J]. Proc Natl Acad Sci USA, 1998, 95(24):14570-14575. [47] Koag MC, Fenton RD, Wilkens S, et al. The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity[J]. Plant Physiol, 2003, 131(1):309-316. [48] Tolleter D, Jaquinod M, Mangavel C, et al. Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation[J]. The Plant Cell, 2007, 19(5):1580-1589. [49] Rinne PL, Kaikuranta PL, van der Plas LHW, et al. Dehydrins in cold-acclimated apices of birch(Betula pubescens Ehrh. ):production, localization and potential role in rescuing enzyme function during dehydration[J]. Planta, 1999, 209(4):377-388. [50] Mouillon JM, Gustafsson P, Harryson P. Structural investigation of disordered stress proteins. Comparison of full-length dehydrins with isolated peptides of their conserved segments[J]. Plant Physiol, 2006, 141(2):638-650. [51] Xu DP, Duan XL, Wang BY. Expression of a late embryogenesis abundant protein gene, HVA7, from barley confers tolerance to water eeficit and salt stress in transgenic rice[J]. Plant Physiol, 1996, 110(1):249-257. [52] Sivamani E, Bahieldin A, Wraith JM, et al. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene[J]. Plant Science, 2000, 155(1):1-9. [53] Checker VG, Chhibbar AK, Khurana P. Stress-inducible expression of barley HVA1 gene in transgenic mulberry displays enhanced tolerance against drought, salinity and cold stress[J]. Transgenic Res, 2012, 21(5):939-957. [54] Fu DL, Huang BR, Xiao YM, et al. Overexpression of barley HVA1 gene in creeping bentgrass for improving drought tolerance[J]. Plant Cell Rep, 2007, 26(4):467-477. [55] Cheng ZQ, Targolli J, Huang XQ, et al. Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice(Oryza sativa L. )[J]. Molecular Breeding, 2002, 10(1-2):71-82. [56] Amara I, Capellades M, Ludevid MD, et al. Enhanced water stress tolerance of transgenic maize plants over-expressing LEA Rab28 gene[J]. Journal of Plant Physiology, 2013, 170(9):864-873. [57] Xiao BZ, Huang YM, Tang N, et al. Over-expression of a LEA gene in rice improves drought resistance under the field conditions[J]. Theor Appl Gene, 2007, 115(1):35-46. [58] Ganguly M, Datta K, Roychoudhury A, et al. Overexpression of Rab16A gene in indica rice variety for generating enhanced salt tolerance[J]. Plant Signaling & Behavior, 2012, 7(4):502-509. [59] Wu YC, Liu CL, Kuang J, et al. Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrh-iza[J]. Protoplasma, 2014, 215(5):1191-1199. [60] Park SC, Kim YH, Jeong JC, et al. Sweetpotato late embryogenesis abundant 14(IbLEA14)gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli[J]. Planta, 2011, 233(3):621-634. [61] Godoy JA, Lunar R, Torres-Schumann S, et al. Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants[J]. Plant Mol Biol, 1994, 26(6):1921-1934. [62] Munoz-Mayora A, Pineda B, Garcia-Abellan JO, et al. Overexpress-ion of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato[J]. Journal of Plant Physiology, 2012, 169(5):459-468. [63] Wang XQ, Yang PF, Liu Z, et al. Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy[J]. Plant Physiology, 2009, 149(4):1739-1750. |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[3] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[4] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[5] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[6] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[9] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[10] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[11] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[12] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[13] | 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170. |
[14] | 周国彦, 银珊珊, 高佳鑫, 武春成, 闫立英, 谢洋. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 2022, 38(6): 112-119. |
[15] | 赵明明, 唐殷, 郭磊周, 韩佳慧, 葛佳茗, 孟勇, 平淑珍, 周正富, 王劲. Lon1蛋白酶参与耐辐射异常球菌高温胁迫及细胞分裂的功能研究[J]. 生物技术通报, 2022, 38(5): 149-158. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||