[1]Madan S, Sayeed A, Singh GN, et al. Stevia rebaudiana(Bertoni):a review[J]. Indian Journal of Natural Products and Resources, 2010, 1(3):267-286.
[2]徐铮奎. 甜菊糖将迎来黄金时代[N]. 医学经济报, 2012-4-25.
[3]Brandle JE, Telmer PG. Steviol glycoside biosynthesis[J]. Phytochemistry, 2007, 68(14):1855-1863.
[4]DuBois GE, Stephenson RA. Diterpenoid sweeteners. Synthesis and sensory evaluation of stevioside analogues with improved organoleptic properties[J]. Journal of Medicinal Chemistry, 1985, 28(1):93-98.
[5]Ye F, Yang RJ, Hua X, et al. Modification of steviol glycosides using α-amylase[J]. LWT-Food Science and Technology, 2014, 57(1):400-405.
[6]Prakash I, Markosyan A, Bunders C. Development of next generation stevia sweetener:rebaudioside M[J]. Foods, 2014, 3(1):162-175.
[7]Matsui M, Matsui K, Kawasaki Y, et al. Evaluation of the genotoxicity of stevioside and steviol using six in vitro and one in vivo mutagenicity assays[J]. Mutagenesis, 1996, 11(6):573-579.
[8]Geuns JM. Stevioside[J]. Phytochemistry, 2003, 64(5):913-921.
[9]Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4):347-355.
[10]Richman A, Swanson A, Humphrey T, et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana[J]. Plant J, 2005, 41(1):56-67.
[11]Yang YH, Huang SZ, Han YL, et al. Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A:mutations in UGT76G1, a key gene of steviol glycosides synthesis[J]. Plant Physiol Biochem, 2014, 80:220-225.
[12]Chen J, Hou K, Qin P, et al. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes[J]. BMC Genomics, 2014, 15:571.
[13]Kamiya Y, Magome H, Nomura T, Yamaguchi S. Method for producing steviol synthetase gene and steviol:US, 20080271205[P]. 2008.
[14]Guleria P, Yadav SK. Agrobacterium mediated transient gene silencing(AMTS)in Stevia rebaudiana:insights into steviol glycoside biosynthesis pathway[J]. PLoS One, 2013, 8(9):e74731.
[15]Khan SA, Ur Rahman L, Shanker K, Singh M. Agrobacterium tumefaciens-mediated transgenic plant and somaclone production through direct and indirect regeneration from leaves in Stevia rebaudiana with their glycoside profile[J]. Protoplasma, 2014, 251(3):661-670.
[16]Pezzuto JM, Compadre CM, Swanson SM, et al. Metabolically activated steviol, the aglycone of stevioside, is mutagenic[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(8):2478-2482.
[17]Procinska E, Bridges BA, Hanson JR. Interpretation of results with the 8-azaguanine resistance system in Salmonella typhimurium:no evidence for direct acting mutagenesis by 15-oxosteviol, a possible metabolite of steviol[J]. Mutagenesis, 1991, 6(2):165-167.
[18]Goyal SK, Samsher, Goyal RK. Stevia(Stevia rebaudiana)a bio-sweetener:a review[J]. International Journal of Food Sciences and nNutrition, 2010, 61(1):1-10.
[19]WHO. Safety evaluation of certain contaminants in food. Prepared by the Sixty-fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives(JECFA)[J]. FAO Food and Nutrition Paper, 2006, 82:1-778.
[20]WHO. Joint FAO/WHO Expert Committee on food additives[C]. Sixty-ninth Meeting, 2008.
[21]USFDA. Agency Response Letter GRAS Notice No. GRN 000388[DB]. US Food and Drug Admininstration. 2012.
[22]EUFSA. EFSA evaluates the safety of steviol glycosides[R]. European Food Safety Authority, 2010.
[23]Hsieh MH, Chan P, Sue YM, et al. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension:a two-year, randomized, placebo-controlled study[J]. Clinical Therapeutics, 2003, 25(11):2797-2808.
[24]Chatsudthipong V, Muanprasat C. Stevioside and related compounds:therapeutic benefits beyond sweetness[J]. Pharmacology & Therapeutics, 2009, 121(1):41-54.
[25]Anton SD, Martin CK, Han H, et al. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels[J]. Appetite, 2010, 55(1):37-43.
[26]Helliwell CA, Chandler PM, Poole A, et al. The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(4):2065-2070.
[27]Guleria P, Masand S, Yadav SK. Overexpression of SrUGT85C2 from Stevia reduced growth and yield of transgenic Arabidopsis by influencing plastidial MEP pathway[J]. Gene, 2014, 539(2):250-257.
[28]Jain P, Kachhwaha S, Kothari S. Biotechnology and metabolic engineering of Stevia rebaudiana(BERT. )Bertoni:Perspective and possibilities[J]. International Journal of Life Sciences Biotechnology and Phama Research, 2014, 3(3):15-37.
[29]Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nature Biotechnology, 2014, 32(4):347-355.
[30]Lozano-Juste J, Cutler SR. Plant genome engineering in full bloom[J]. Trends in Plant Science, 2014, 19(5):284-287.
[31]Gupta P, Sharma S, Saxena S. Effect of salts(NaCl and Na2CO3)on callus and suspension culture of Stevia rebaudiana for steviol glycoside production[J]. Applied Biochemistry and Biotechnology, 2014, 172(6):2894-2906.
[32]Philippe RN, De Mey M, Anderson J, Ajikumar PK. Biotechnologic-al production of natural zero-calorie sweeteners[J]. Curr Opin Biotechnol, 2014, 26:155-161. |