生物技术通报 ›› 2015, Vol. 31 ›› Issue (10): 89-98.doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.016
王鹤霏,刘东军
收稿日期:
2014-12-22
出版日期:
2015-10-28
发布日期:
2015-10-28
作者简介:
王鹤霏, 女, 博士研究生, 研究方向:转基因动物; E-mail:842354318@qq.com
基金资助:
Wang Hefei, Liu Dongjun
Received:
2014-12-22
Published:
2015-10-28
Online:
2015-10-28
摘要: 糖尿病是严重危害人类健康的疾病, 近年来, 随着转基因理论及技术的发展, 很多科学家都致力于应用转基因技术治疗糖尿病, 并取得了显著成效。主要综述了目前在转基因糖尿病动物模型构建和糖尿病治疗方面取得的诸多成果, 以及面临的挑战。提出了今后在建立高效的胰岛素基因转移体系、选择与β细胞生理特点相似又免受自身免疫系统攻击的靶细胞、基因表达的持续性和糖尿病易感基因的鉴定等方向的突破, 可以加快糖尿病的基因治疗用于临床的步伐。
王鹤霏,刘东军. 转基因技术:糖尿病的动物模型构建及治疗[J]. 生物技术通报, 2015, 31(10): 89-98.
Wang Hefei, Liu Dongjun. Transgenic Technology: Establishment of Animal Models and Treatment of Diabetes Mellitus[J]. Biotechnology Bulletin, 2015, 31(10): 89-98.
[1]黄建萍, 陈大灵. 糖尿病的流行趋势及预防控制策略的研究进展[J]. 现代预防医学, 2008, 35(5):962-964. [2]Alam U, Asghar O, Azmi S, et al. General aspects of diabetes mellitus[J]. Handb Clin Neurol, 2014, 126:211-222. [3]Junod A, Lambert AE, Stauffacher W, et al. Diabetogenic action of streptozotocin:relationship of dose to metabolic response[J]. J Clin Invest, 1969, 48(11):2129-2139. [4]Lenzen S, Patten U. Alloxan history and mechanism of action[J]. Diabetologia, 1988, 31(6):337-342. [5]Schnedl WJ, Ferber S, Johnson JH, et al. STZ transport and cytotoxicity. Specific enhancement in GLUT2-expressing cells[J]. Diabetes, 1994, 43:1326-1333. [6]de la Garza-Rodea AS, Kna?n-Shanzer S, den Hartigh JD, et al. Anomer-equilibrated streptozotocin solution for the induction of experimental diabetes in mice(Mus musculus)[J]. J Am Assoc Lab Anim Sci, 2010, 49(1):40-44. [7]Rees DA, Alcolado JC. Animal models of diabetes mellitus[J]. Diabet Med, 2005, 22:359-370. [8]King C, Sarvetnick N. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions[J]. PLoS One, 2011, 6(2):e17049. [9]Crisa L, Mordes JP, Rossini AA. Autoimmune diabetes mellitus in the BB rat[J]. Diabetes Metab Rev, 1992, 8:4-37. [10]Scott J. The spontaneously diabetic BB rat:sites of the defects leading to autoimmunity and diabetes mellitus:a review[J]. Curr Top Microbiol Immunol, 1990, 156:1-14. [11]Ghanaat-Pour H, Huang Z, Lehtihet M, et al. Global expression profiling of glucose-regulated genes in pancreatic islets of spontaneously diabetic Goto-Kakizaki rats[J]. J Mol Endocrinol, 2007, 39:135-150. [12]Iwatsuka H, Shino A, Suzuoki Z. General survey of diabetic features of yellow KK mice[J]. Endocrinol Jpn, 1970, 17:23-35. [13]Castle CK, Colca JR, Melchior GW. Lipoprotein profile characterization of the KKA(y)mouse, a rodent model of type II diabetes, before and after treatment with the insulin-sensitizing agent pioglitazone[J]. Arterioscler Thromb, 1993, 13:302-309. [14]Ikegami H, Fujisawa T, Ogihara T. Mouse models of type 1 and type 2 diabetes derived from the same closed colony:genetic susceptibility shared between two types of diabetes[J]. ILAR J, 2004, 45:268-277. [15]Ueda H, Ikegami H, Kawaguchi Y, et al. Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse[J]. Diabetologia, 2000, 43:932-938. [16]Ueda H, Ikegami H, Yamato E, et al. The NSY mouse:a new animal model of spontaneous NIDDM with moderate obesity[J]. Diabetologia, 1995, 38:503-508. [17]吴勇军, 喻嵘, 胡伟, 等. 滋阴益气活血解毒组方对MKR转基因2型糖尿病小鼠糖代谢的影响[J]. 湖南中医药大学学报, 2007, 27(2):20-23. [18]Accili D, Drago J, Lee EJ, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene[J]. Nat Genet, 1996, 12:106-109. [19]Joshi RL, Lamothe B, Cordonnier N, et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality[J]. EMBOJ, 1996, 15:1542-1547. [20]Kulkarni RN, Bruning JC, Winnay JN, et al. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes[J]. Cell, 1999, 96:329-339. [21]Bruning JC, Michael MD, Winnay JN, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance[J]. Mol Cell, 1998, 2:559-569. [22]Fernandez AM, Kim JK, Yakar S, et al. Functional inactivation of the IGF-1 and insulin receptor in skeletal muscle causes type 2 diabetes[J]. Genes Dev, 2001, 15:1926-1934. [23]Kim H, Haluzik M, Gavrilova O, et al. Thiazolidinediones improve insulin sensitivity in adipose tissue and reduce the hyperlipidaemia without affecting the hyperglycaemia in a transgenic model of type 2 diabetes[J]. Diabetologia, 2004, 47(12):2215-2225. [24]Kim H, Pennisi P, Zhao H, et al. MKR mice are resistant to the metabolic actions of both insulin and adiponectin:discordance between insulin resistance and adiponectin responsiveness[J]. Am J Physiol Endocrinol Metab, 2006, 291(2):E298-E305. [25] Patricia P, Oksana G, Jennifer SP, et al. Recombinant human insulin-like growth factor-1(rhIGF-1)treatment inhibits gluconeogenesis in a transgenic mouse model of type 2 diabetes mellitus(DM)[J]. Endocrinology, 2006, 147:2619- 2630. [26]Kumar A, Harrelson T, Lewis NE, et al. Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice[J]. PLoS One, 2014, 9(7):e102319. [27]Li X, Wu X, Camacho R, et al. Intracerebroventricular leptin infusion improves glucose homeostasis in lean type 2 diabetic MKR mice via hepatic vagal and non-vagal mechanisms[J]. PLoS One, 2011, 6(2):e17058. [28]Maddux BA, Sbraccia P, Kumakura S, et al. Membrane glycoprotein PC-1 and insulin resistance in non-insulin-dependent diabetes mellitus[J]. Nature, 1995, 373:448-451. [29]Kumakura S, Maddux BA, Sung CK. Overexpression of membrane glycoprotein PC-1 can influence insulin action at a post-receptor site[J]. J Cell Biochem, 1998, 68:366-377. [30]Teno S, Kanno H, Oga S, et al. Increased activity of membrane glycoprotein PC-1 in the fibroblast from non-insulin-dependent diabetes mellitus patients with insulin resistance[J]. Diabet Res Clin Pract, 1999, 45:25-30. [31]Menzaghi C, Di Paola R, Baj G, et al. Insulin modulates PC-1 processing and recruitment in cultured human cells[J]. Am J Physical Endocrinol Metab, 2003, 284:514-520. [32]Frittitta L, Sbraccia P, Costanzo BV, et al. High insulin levels do not influence PC-1 gene expression and protein content in human muscle tissue and hepatoma cells[J]. Diabet Metab Res Rev, 2000, 16:26-32. [33]王毅, 骆惠均, 王芳, 等. PC-1转基因小鼠的建立及其与2型糖尿病发病的关系[J]. 中华内分泌代谢, 2005, 21:554-556. [34]Jemaa Z, Kallel A, et al. The Gly482Ser polymorphism of the peroxisome proliferator-activated receptor-γ coactivator-1α(PGC-1α)is associated with type 2 diabetes in Tunisian population[J]. Diabetes Metab Syndr, 2013, pii:S1871-4021(13)00101-X. [35]Choi J, Ravipati A, Nimmagadda V, et al. Potential roles of PINK1 for increased PGC-1α-mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes[J]. Mitochondrion, 2014, 18C:41-48. [36]Wu HH, Liu NJ, et al. Association and interaction analysis of PPA-RGC1A and serum uric acid on type 2 diabetes mellitus in Chinese Han population[J]. Diabetol Metab Syndr, 2014, 6:107. [37]Shokouhi S, Haghani K, Borji P, et al. Association between PGC-1alpha gene polymorphisms and type 2 diabetes risk:a case-control study of an iranian population[J]. Can J Diabetes, 2014, pii:S1499-2671(14)00194-4. [38]Inoue H, Shintani N, Sakurai Y, et al. PACAP inhibits β-cell mass expansion in a mouse model of type II diabetes:persistent suppressive effects on islet density[J]. Front Endocrinol(Lausanne), 2013, 4:27. [39]Subramanian SL, Hull RL, Zraika S, et al. cJUN N-terminal kinase(JNK)activation mediates islet amyloid-induced beta cell apoptosis in cultured human islet amyloid polypeptide transgenic mouse islets[J]. Diabetologia, 2012, 55(1):166-174. [40]Iancu AD, St?varu C. Double transgenic mice--a suitable model for studying oxidative stress in type 1 diabetes mellitus[J]. Roum Arch Microbiol Immunol, 2012, 71(4):201-220. [41]Morgan MA, Muller PS, Mould A, et al. The nonconventional MHC class II molecule DM governs diabetes susceptibility in NOD mice[J]. PLoS One, 2013, 8(2):e56738. [42]何君, 韩瑞红, 邓巍, 等. 表达人TCRα转基因小鼠1型糖尿病模型的建立及其免疫机制的初步研究[J]. 中国实验动物学报, 2013, 21(5):82-85. [43]Assmann TS, Brondani Lde A, Bauer AC, et al. Polymorphisms in the TLR3 gene are associated with risk for type 1 diabetes mellitus[J]. Eur J Endocrinol, 2014, 170(4):519-527. [44]Li YY, Gao W, Pang SS, et al. TAP1 I333V gene polymorphism and type 1 diabetes mellitus:a meta-analysis of 2248 cases[J]. J Cell Mol Med, 2014, 18(5):929-937. [45]Wang G, Zhang Q, Xu N, et al. Associations between two polymorphisms(FokI and BsmI)of vitamin D receptor gene and type 1 diabetes mellitus in Asian population:a meta-analysis[J]. PLoS One, 2014, 9(3):e89325. [46]Salem HH, Trojanowski B, Fiedler K, et al. Long-term IKK2/NF-κB signaling in pancreatic β-cells induces immune-mediated diabetes[J]. Diabetes, 2014, 63(3):960-975. [47]Feng ZC, Riopel M, Li J, et al. Downregulation of Fas activity rescues early onset of diabetes in c-Kit(Wv/+)mice[J]. Am J Physiol Endocrinol Metab, 2013, 304(6):E557-565. [48]Blüher M, Kl?ting N, Wueest S, et al. Fas and FasL expression in human adipose tissue is related to obesity, insulin resistance, and type 2 diabetes[J]. J Clin Endocrinol Metab, 2014, 99:36-44. [49]苗宏生, 惠国桢. 小剂量链脲霉素(STZ)诱导hFasL转基因小鼠发生糖尿病的研究[J]. 实用临床医药杂志, 2004, 8(2):44-46. [50]宋媛, 徐少勇, 周洁, 等. 高表达胰岛素反应性天然自身抗体转基因小鼠糖耐量分析[J]. 现代生物医学进展, 2013, 13(9):1627-1630. [51] 赖巧红. SUMO化修饰对胰岛β细胞凋亡的调控其机制研究[D]. 武汉:华中科技大学, 2013. [52]朱金改. PID1脂肪组织特异性转基因小鼠的构建及表型分析[D]. 南京:南京医科大学, 2012. [53]Hart AW, Mella S, Mendrychowski J, et al. The developmental regulator Pax6 is essential for maintenance of islet cell function in the adult mouse pancreas[J]. PLoS One, 2013, 8(1):e54173. [54]Lin MH, Chou FC, Yeh LT, et al. B lymphocyte-induced maturation protein 1(BLIMP-1)attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells[J]. Diabetologia, 2013, 56(1):136-146. [55]Tsai S, Serra P, Clemente-Casares X, et al. Antidiabetogenic MHC class II promotes the differentiation of MHC-promiscuous autoreactive T cells into FOXP3+ regulatory T cells[J]. Proc Natl Acad Sci USA, 2013, 110(9):3471-3476. [56]Jin Y, Purohit S, Chen X, et al. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic(NOD)mice via up-regulation of CD4+ CD25+ regulatory T cells[J]. Biochem Biophys Res Commun, 2012, 424(4):669-674. [57]Phillips MI, Tang Y. Genetic modification of stem cells for cardiac, diabetic, and hemophilia transplantation therapies[J]. Prog Mol Biol Transl Sci, 2012, 111:285-304. [58]Mojibian M, Lam AW, Fujita Y, et al. Insulin-producing intestinal K cells protect NOD mice from autoimmune diabetes[J]. Gastroenterology, 2014, pii:S0016-5085. [59]Nagaraju S, Bottino R, Wijkstrom M, et al. Islet xenotransplantation from genetically engineered pigs[J]. Curr Opin Organ Transplant, 2013, 18(6):695-702. [60]Wu H, Yoon AR, Li F, et al. RGD peptide-modified adenovirus expressing hepatocyte growth factor and X-linked inhibitor of apoptosis improves islet transplantation[J]. J Gene Med, 2011, 13(12):658-669. [61]Codd JD, Salisbury JR, Packham G, et al. A20 RNA expression is associated with undifferentiated nasopharyngeal carcinoma and poorly differentiated head and neck squamous cell carcinoma[J]. J Pathol, 1999, 187:549-555. [62]Lee EG, Boone DL, Chai S, et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice[J]. Science, 2000, 289:2350-2354. [63]Opipari AW Jr, Hu HM, Yabkowitz R, et al. The A20 zinc finger protein protects cells from tumor necrosis factor cytotoxicity[J]. J Biol Chem, 1992, 267:12424-12427. [64]Janicke RU, Lee FH, Porter AG. Nuclear c-Myc plays an important role in the cytotoxicity of tumor necrosis factor a in tumor cells[J]. Mol Cell Biol, 1994, 14:5661-5670. [65]支涤静. A20转基因抑制胰岛移植排斥反应作用的初步探讨[D].上海:复旦大学, 2011. [66]Cassese A, Raciti GA, Fiory F, et al. Adenoviral gene transfer of PLD1-D4 enhances insulin sensitivity in mice by disrupting phospholipase D1 interaction with PED/PEA-15[J]. PLoS One, 2013, 8(4):e60555. [67] Atkinson BJ, Griesel BA, King CD, et al.Moderate GLUT4 overex-pression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice[J]. Diabetes, 2013, 62(7):2249-2258. [68]Liu BH, Lin YY, Wang YC, et al. Porcine adiponectin receptor 1 transgene resists high-fat/sucrose diet-induced weight gain, hepatosteatosis and insulin resistance in mice[J]. Exp Anim, 2013, 62(4):347-360. [69]Meng ZX, Li S, Wang L, et al. Baf60c drives glycolytic metabolism in the muscle and improves systemic glucose homeostasis through Deptor-mediated Akt activation[J]. Nat Med, 2013, 19(5):640-645. [70]Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV:progress and challenges[J]. Nat Rev Genet, 2011, 12:341-355. [71]Maguire AM, High KA, Auricchio A, et al. Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis:a phase 1 dose-escalation trial[J]. Lancet, 2009, 374:1597-1605. [72]Nathwani AC, Tuddenham EG, Rangarajan S, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B[J]. N Engl J Med, 2011, 365:2357-2365. [73]Callejas D, Mann CJ, Ayuso E, et al. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy[J]. Diabetes, 2013, 62(5):1718-1729. [74]Chen S, Shimoda M, Chen J, et al. Ectopic transgenic expression of NKX2.2 induces differentiation of adult pancreatic progenitors and mediates islet regeneration[J]. Cell Cycle, 2012, 11:1544-1153. [75]Bone RN, Icyuz M, Zhang Y, et al. Gene transfer of active Akt1 by an infectivity-enhanced adenovirus impacts β-cell survival and proliferation differentially in vitro and in vivo[J]. Islets, 2012, 4(6):366-378. [76] Hakonen E, Ustinov J, Eizirik DL, et al. In vivo activation of the PI3K-Akt pathway in mouse beta cells by the EGFR mutation L858R protects against diabetes[J]. Diabetologia, 2014, 57:970-979. [77]姚艳丽, 冯凭. 胰高血糖素样肽-1与Ⅰ型糖尿病治疗[J]. 生命的化学, 2005, 25(4):316-317. [78]Giorgino F, Laviola L, Leonardini A, et al. GLP-1:a new approach for type 2 diabetes therapy[J]. Diabetes Research and Clinical Practice, 2006, 74:S152-S155. [79]Choi S, Oh S, Lee M, et al. Glucagon-like peptide-1 plasmid construction and delivery for the treatment of type 2 diabetes[J]. Mol Ther, 2005, 12(5):885-891. [80]Mohamed R, Jayakumar C, Ranganathan PV, et al. Kidney proximal tubular epithelial-specific overexpression of netrin-1 suppresses inflammation and albuminuria through suppression of COX-2-mediated PGE2 production in streptozotocin-induced diabetic mice[J]. Am J Pathol, 2012, 181(6):1991-2002. [81]Wiechert S, El-Armouche A, Rau T, et al. 24-h Langendorff-perfused neonatal rat heart used to study the impact of adenoviral gene transfer[J]. Am J Physiol Heart Circ Physiol, 2003, 285(2):H907- H914. [82]Yamada Y, Tabata M, Yasuzaki Y, et al. A nanocarrier system for the delivery of nucleic acids targeted to a pancreatic beta cell line[J]. Biomaterials, 2014, 35(24):6430-6438. [83]Tomita N, Higaki J, Ogihara T, et al. A novel gene-transfer technique mediated by HVJ(Sendai virus), nuclear protein, and liposomes[J]. Cancer Detect Prev, 1994, 18(6):485-491. [84]Takahashi R, Ishihara H, Takahashi K, et al. Efficient and controlled gene expression in mouse pancreatic islets by arterial delivery of tetracycline-inducible adenoviral vectors[J]. J Mol Endocrinol, 2007, 38(1-2):127-136. [85]Londrigan SL, Brady JL, Sutherland RM, et al. Evaluation of promoters for driving efficient transgene expression in neonatal porcine islets[J]. Xenotransplantation, 2007, 14(2):119-125. [86]He CX, Shi D, Wu WJ, et al. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration[J]. World J Gastroenterol, 2004, 10(4):567-572. [87]Lu Z, Shen SX, Zhi DJ, et al. Protective effect of cotransfection of A20 and HO-1 gene against the apoptosis induced by TNF-α in rat islets in vitro[J]. Zhonghua Er Ke Za Zhi, 2013, 51:420-425. [88] McCabe C, O’Brien T. The rational design of beta cell cytoprotective gene transfer strategies:targeting deleterious iNOS expression[J]. Mol Biotechnol, 2007, 37(1):38-47. [89]Giannoukakis N, Trucco M. A 2015 reality check on cellular therapies based on stem cells and their insulin-producing surrogates[J]. Pediatr Diabetes, 2015, doi:10.1111/pedi.12259. [90]Lin HP, Chan TM, Fu RH, et al. Applicability of adipose-derived stem cells in type 1 diabetes mellitus[J]. Cell Transplant, 2015, 24(3):521-532. [91] Raikwar SP, Kim EM, et al. Human iPS cell-derived insulin produ-cing cells form vascularized organoids under the kidney capsules of diabetic mice[J]. PLoS One, 2015, 10(1):e0116582. [92]Dave S. Mesenchymal stem cells derived in vitro transdifferentiated insulin-producing cells:A new approach to treat type 1 diabetes[J]. Adv Biomed Res, 2014, 3:266. [93]Calafiore R, Montanucci P, Basta G. Stem cells for pancreatic β-cell replacement in diabetes mellitus:actual perspectives[J]. Curr Opin Organ Transplant, 2014, 19(2):162-168. [94]Kong D, Zhuang X, Wang D, et al. Umbilical cord mesenchymal stem cell transfusion ameliorated hyperglycemia in patients with type 2 diabetes mellitus[J]. Clin Lab, 2014, 60:1969-1976. [95] Takemoto N, Konagaya S, Kuwabara R, et al. Coaggregates of regulatory T cells and islet cells allow long-term graft survival in liver without immunosuppression[J]. Transplantation, 2015, 95(5):942-947. [96] Mitsui M, Nishikawa M, Zang L, et al. Effect of the content of unmethylated CpG dinucleotides in plasmid DNA on the sustainability of transgene expression[J]. J Gene Med, 2009, 11(5):435-443. [97]Tan IK, Mackin L, Wang N, et al. A recombination hotspot leads to sequence variability within a novel gene(AK005651)and contributes to type 1 diabetes susceptibility[J]. Genome Res, 2010, 20(12):1629-1638. [98]Qiu YH, Deng FY, Li MJ, et al. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis[J]. J Diabetes Investig, 2014, 5(6):649-656. [99]Bergholdt R, Brorsson C, Palleja A, et al. Identification of novel type 1 diabetes candidate genes by integrating genome-wide association data, protein-protein interactions, and human pancreatic islet gene expression[J]. Diabetes, 2012, 61(4):954-962. [100] Butter F, Davison L, Viturawong T, et al. Proteome-wide analysis of disease-associated SNPs that show allele-specific transcription factor binding[J]. PLoS Genet, 2012, 8(9):e1002982. [101] Shu XO, Long J, Cai Q, et al. Identification of new genetic risk variants for type 2 diabetes[J]. PLoS Genet, 2010, 6(9):e1001127. [102] Park MH, Kwak SH, Kim KJ, et al. Identification of a genetic locus on chromosome 4q34-35 for type 2 diabetes with overweight[J]. Exp Mol Med, 2013, 45:e7. [103] Babaya N, Fujisawa T, Nojima K, et al. Direct evidence for susceptibility genes for type 2 diabetes on mouse chromosomes 11 and 14[J]. Diabetologia, 2010, 53(7):1362-1371. [104] Raza ST, Abbas S, Ahmed F, et al. Association of MTHFR and PPARγ2 gene polymorphisms in relation to type 2 diabetes mellitus cases among north Indian population[J]. Gene, 2012, 511(2):375-379. |
[1] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[2] | 王贵芳, 姚元涛, 许海峰, 相昆, 梁家慧, 张淑辉, 王文茹, 张明娟, 张美勇, 陈新. 核桃JrSnRK1α1.1调控种子油脂合成与积累[J]. 生物技术通报, 2023, 39(9): 183-191. |
[3] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[4] | 陈彩萍, 任昊, 龙腾飞, 何冰, 鲁兆祥, 孙坚. 大肠杆菌Nissle 1917对炎症性肠病治疗作用的研究进展[J]. 生物技术通报, 2023, 39(6): 109-118. |
[5] | 朱少喜, 金肇阳, 葛建镕, 王蕊, 王凤格, 路运才. 基于KASP平台的转基因玉米高通量特异性检测方法[J]. 生物技术通报, 2023, 39(6): 133-140. |
[6] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[7] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[8] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[9] | 鄢梦雨, 韦晓薇, 曹婧, 兰海燕. 异子蓬SabHLH169基因的克隆及抗旱功能分析[J]. 生物技术通报, 2023, 39(11): 328-339. |
[10] | 陶娜, 李茂兴, 郭华春. 发根农杆菌介导的甘薯遗传转化体系优化[J]. 生物技术通报, 2023, 39(10): 175-183. |
[11] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[12] | 解伟, 刘春明. 生物育种产业化面临的机遇与政策保障[J]. 生物技术通报, 2023, 39(1): 16-20. |
[13] | 李圣彦, 李香银, 李鹏程, 张明俊, 张杰, 郎志宏. 转基因玉米2HVB5的性状鉴定及遗传稳定性分析[J]. 生物技术通报, 2023, 39(1): 21-30. |
[14] | 李东阳, 肖冰, 王晨尧, 杨现明, 梁晋刚, 吴孔明. 转基因抗虫耐除草剂玉米瑞丰125 Cry1Ab/Cry2Aj杀虫蛋白的时空表达分析[J]. 生物技术通报, 2023, 39(1): 31-39. |
[15] | 李鹏程, 张明俊, 王银晓, 李香银, 李圣彦, 郎志宏. 转基因玉米HGK60在不同遗传背景下抗虫性鉴定及农艺性状分析[J]. 生物技术通报, 2023, 39(1): 40-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||