[1] Thavasi R, Nambaru VR, Jayalakshmi S. Biosurfactant production by Pseudomonas aeruginosa from renewable resources[J]. Indian Journal of Microbiology, 2011, 51(1):30-36. [2] Markus MM, Barbara H, Michaela K, et al. Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874[J]. Applied Microbiology Biotechnology, 2011, 89(7):585-592. [3] Rahman KS, Rahman TJ, McClean S, et al. Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials[J]. Biotechnology Progress, 2002, 18:1277-1281. [4] Makkar RS, Cameotra SS. Biosurfactant production by microorganisms on unconventional carbon sources-a review[J]. J Surf Det, 1999, 2:237-241. [5] 包木太, 张金秋, 张娟, 等. 产糖脂类生物表面活性剂菌株鉴定及发酵条件优化[J]. 环境工程学报, 2013, 7(1):365-370. [6] Nur AM, Amirul AA, Mohamad NM. Rhamnolipid produced by Pseudomonas aeruginosa USM-AR2 facilitates crude oil distillation[J]. The Journal of General and Applied Microbiology, 2012, 58:153-161. [7] Siegmund I, Wagner F. New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar[J]. Biotechnology Technology, 1991, 5:265-268. [8] Pinzon N, Ju LK. Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyl trimethylammonium bromide[J]. Biotechnology Letter, 2009, 31:1583-1588. [9] Benincasa M, Accorsini FR. Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate[J]. Bioresource Technology, 2008, 99:3843-3849. [10] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning:A laboratory manual[M]. 2nd ed. New York:Cold Spring Harbor Laboratory Press, 1989:20-25. [11] Kutter E. Bacteriophages:biology and applications[J]. Boca Raton, FL:CRC Press, 2004:528. [12] Zhang JH, Madden TL. Power BLAST:A new network BLAST application for interactive or automated sequence analysis and annotation[J]. Genome Research, 1997, 7(6):649-656. [13] Tamura K, Peterson D, Peterson N, et al. MEGA5:Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28:2731-2739. [14] Zhao JF, Wu YJ, Akateh TA, et al. Chemical structures and biological activities of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa M14808[J]. Journal of Chemical and Pharmaceutical Research, 2013, 5(12):177-182. [15] Dwivedi S, Singh BR, Al KA, et al. Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance[J]. Journal of Hazardous Materials, 2011, 185(2-3):938-944. [16] Abalos A, Pinazo A, Infante MR, et al. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes[J]. Langmuir, 2001, 17(5):1367-1371. [17] Thavasi R, Jayalakshmi S, Balasubramanian T, et al. Biosurfactant production by Corynebacterium kutscheri from waste motor lubricant oil and peanut oil cake[J]. Letters in Applied Microbiology, 2007, 45(1):686-691. [18] George S, Jayachandran K. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D[J]. Journal of Applied Microbiology, 2013, 114(2):373-383. [19] Li AH, Xu MY, Sun W, et al. Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater[J]. Applied Biochemistry Biotechnology, 2011, 163(5):600-611. [20] Milena GR, Ahmad MA, Eric DZ. Comparative analysis of rhamno-lipids from novel environmental isolates of Pseudomonas aeruginosa[J]. Journal of Surfactants and Detergents, 2013, 16(3):673-682. [21] Wadekar SD, Kale SB, Lali AM, et al. Microbial synthesis of rhamnolipids by Pseudomonas aeruginosa(ATCC 10145)on waste frying oil as low cost carbon source[J]. Preparative Biochemistry and Biotechnology, 2012, 42(3):249-266. |