[1] Boukahil I, Czuprynski CJ. Characterization of Mannheimia haemolytica biofilm formation in vitro[J] . Veterinary Microbiology, 2015. 175(1):114-122. [2] Flemming HC, Wingender J. The biofilm matrix[J] . Nature Reviews Microbiology, 2010. 8(9):623-633. [3] Garcia-Meza J, Fernandez J, Lara R, et al. Changes in biofilm structure during the colonization of chalcopyrite by Acidithiobacillus thiooxidans[J] . Appl Microbiol Biotechnol, 2013, 97(13):6065-6075. [4] Sampson M, Phillips C, Blake R. Influence of the attachment of acidophilic bacteria during the oxidation of mineral sulfides[J] . Minerals Engineering, 2000, 13(4):373-389. [5] Zeng W, Qiu G, Zhou H, et al. Community structure and dynamics of the free and attached microorganisms during moderately thermophilic bioleaching of chalcopyrite concentrate[J] . Bioresource Technology, 2010, 101(18):7068-7075. [6] Zhang CG, Zhang RY, Xia JL, et al. Sulfur activation-related extracellular proteins of Acidithiobacillus ferrooxidans[J] . Transactions of Nonferrous Metals Society of China, 2008, 18(6):1398-1402. [7] Zhang R, Bellenberg S, Castro L, et al. Colonization and biofilm formation of the extremely acidophilic archaeon Ferroplasma acidiphilum[J] . Hydrometallurgy, 2014, 150:245-252. [8] Guo X, Yin H, Liang Y, et al. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans Strain ST[J] . PLoS One, 2014, 9(6):e99417-e99417. [9] Morales MA. Extracellular polymeric substances(EPS)production in Sulfobacillus thermosulfidooxidans and its relevance on attachment to metal sulfides[D] . New York:Universidad Nacional de Colombia, 2012. [10] Lasa I, Penades JR. Bap:a family of surface proteins involved in biofilm formation[J] . Res Microbiol, 2006, 157(2):99-107. [11] Yu GH, He PJ, Shao LM, et al. Extracellular polymeric substances(EPS)and extracellular enzymes in aerobic granules[J] . Drying Technology, 2010, 28(7):910-915. [12] Branda SS, Chu F, Kearns DB, et al. A major protein component of the Bacillus subtilis biofilm matrix[J] . Molecular Microbiology, 2006, 59(4):1229-1238. [13] Gilboa-Garber N, Mizrahi L, Garber N. Purification of the galactose-binding hemagglutinin of Pseudomonas aeruginosa by affinity column chromatography using sepharose[J] . FEBS letters, 1972, 28(1):93-95. [14] Gilboa-Garber N, Katcoff DJ, Garber NC. Identification and characterization of Pseudomonas aeruginosa PA-IIL lectin gene and protein compared to PA-IL[J] . FEMS Immunology & Medical Microbiology, 2000, 29(1):53-57. [15] Imberty A, Wimmerova M, Mitchell EP, et al. Structures of the lectins from Pseudomonas aeruginosa:insights into the molecular basis for host glycan recognition[J] . Microbes and Infection, 2004, 6(2):221-228. [16] Diggle SP, Stacey RE, Dodd C, et al. The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa[J] . Environ Microbiol, 2006, 6:1095-1104. [17] Park C, Novak JT, Helm RF, et al. Evaluation of the extracellular proteins in full-scale activated sludges[J] . Water Research, 2008, 42(14):3879-89. [18] Boretska M, Bellenberg S, Moshynets O, et al. Change of extracell-ular polymeric substances composition of Thiobacillus thioparus in presence of sulfur and steel[J] . Microbial & Biothemical Technolog, 2013, 5(3):068-073. [19] Rendueles O, Beloin C, Latourlambert P, et al. A new biofilm associated colicin with increased efficiency against biofilm bacteria[J] . Isme Journal, 2014, 8(6):1275-1288. [20] Wolffe AP. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins[J] . Bioessays, 1994, 16(4):245-251. [21] Harami GM, Gyimesi M, Kovacs M. From keys to bulldozers:expanding roles for winged helix domains in nucleic-acid-binding proteins[J] . Trends Biochem Sci, 2013, 38(7):364-371. [22] Li ZH, Kuba T, Kusuda T. The influence of starvation phase on the properties and the development of aerobic granules[J] . Enzyme & Microbial Technology, 2006, 38(5):670-674. [23] Tielen P, Rosenau F, Wilhelm S, et al. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa[J] . Microbiology, 2010, 156(7):2239-2252. [24] Higgins MJ, Novak JT. Characterization of exocellular protein and its role in bioflocculation[J] . Journal of Environmental Engineering, 1997, 123(5):479-485. [25] 张丽丽. 姜理英, 方芳, 等. 好氧颗粒污泥胞外多聚物的提取及成分分析[J] . 环境工程学报, 2007, 1(4):127-130. [26] 张瑞永. Acidithiobacillus ferrooxidans ATCC 23270 硫活化相关胞外蛋白质研究[D] . 长沙:中南大学, 2009. [27] Yang J, He Y, Jiang J, et al. Comparative proteomic analysis by iTRAQ-2DLC-MS/MS provides insight into the key proteins involved in Cronobacter sp. biofilm formation[J] . Food Control, 2016, 63:93-100. [28] Zeng W, Qiu G, Zhou H, et al. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate[J] . Hydrometallurgy, 2010, 100(3):177-180. [29] Felkin LE, Taegtmeyer AB, Barton PJ. Real-time quan-titative polymerase chain reaction in cardiac transplant research[J] . Methods Mol Biol, 2006, 333:305-330. [30] 任广睦, 刘季, 王英元. 实时荧光定量 PCR 技术应用于核酸定量检测的研究进展及展望[J] . 山西医科大学学报, 2007, 37:973-976. [31] 余润兰, 刘亚楠, 周丹, 等. 生物浸出过程中的藻酸盐作用及其机理的研究进展[J] . 中国有色金属学报, 2015, 25(6):1687-1693. [32] Berk AJ, Sharp PA. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids[J] . Cell, 1977, 12(3):721-732. [33] 孔毅, 吴如金, 吴梧桐. 高效毛细管电泳及其在蛋白质、多肽分析中的应用[J] . 药学进展, 2000, 24(4):204-208. [34] Green CD, Simons JF, Taillon BE, Lewin DA. Open systems:panoramic views of gene expression[J] . J Immunol Methods, 2001, 250:67-79. [35] Deiman B, Aarle P, Sillekens P. Characteristics and applications of nucleic acid sequence-based amplification(NASBA)[J] . Molecular Biotechnology, 2002, 20(1):160-179. [36] Weusten JAM, Carpay WM, Tom AM, et al. Principles of quantitation of viral loads using nucleic acid sequence-based amplification in combination with homogenous detection using molecular beacons[J] . Nucleic Acids Res, 2002, 30(6):e26. [37] Ma J, Li N, Guarnera M, et al. Quantification of plasma miRNAs by Digital PCR for cancer diagnosis[J] . Biomark Insights, 2013, 8:127-136. [38] Sanders R, Huggett JF, Bushell CA, et al. Evaluation of digital PCR for absolute DNA quantification[J] . Anal Chem, 2011, 83:6474-648. [39] 刘晶. pH 对嗜酸氧化亚铁硫杆菌分泌胞外多聚物及其吸附性能的影响[D] . 长沙:中南大学, 2013. [40] 游雪娇, 李良秋, 马连营, 等. 激光共聚焦扫描显微镜在抗菌机理研究中的应用[J] . 微生物学通报, 2015, 4(6):1108-1121. [41] Mcswain B, Irvine R, Hausner M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J] . Applied and Environmental Microbiology, 2005, 71(2):1051-1057. [42] Garny K, Neu T, Horn H, et al. Combined application of 13 C NMR spectroscopy and confocal laser scanning microscopy-Investigation on biofilm structure and physico-chemical properties[J] . Chemical Engineering Science, 2010, 65(16):4691-4700. [43] Marabita F, Candia P, Torri A, et al. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR[J] . Briefings in Bioinformatics, 2015, 5(3):68-73. |