[1]闫晓静, 金淑惠, 陈馥衡, 等. Strobilurin类杀菌剂作用靶标的研究进展[J]. 农药学学报, 2006(04):299-305. [2]王丽, 石延霞, 李宝聚, 等. 甲氧基丙烯酸酯类杀菌剂研究进展[J]. 农药科学与管理, 2008, 30(9):24-27. [3]严明, 柏亚罗. 甲氧基丙烯酸酯类等四大类杀菌剂市场概况及前景展望[J]. 现代农药, 2016, 15(6):1-8, 11. [4]何秀玲, 张一宾. 甲氧基丙烯酸酯类和酰胺类杀菌剂品种市场和抗性发展情况[J]. 世界农药, 2013, 35(3):14-19. [5]赵平, 严秋旭, 李新, 等. 甲氧基丙烯酸酯类杀菌剂的开发及抗性发展现状[J]. 农药, 2011, 50(8):547-551. [6]Rodrigues ET, Lopes I, Pardal MA. Occurrence, fate and effects of azoxystrobin in aquatic ecosystems:a review[J]. Environment International, 2013, 53:18-28. [7]EFSA. Conclusions on the peer review of the pesticide risk assessment of the active substance azoxystrobin[J]. European Food Safety Authority Journal, 2010, 8(4):1542-1652. [8] 陈少华, 罗建军, 林庆胜, 等. 农药残留降解方法研究进展[J]. 安徽农业科学, 2009, 37(1):343-345. [9] Harms H, Schlosser D, Wick LY. Untapped potential:exploiting fungi in bioremediation of hazardous chemicals[J]. Nature Reviews Microbiology, 2011, 9(3):177-192. [10] Musilek V, Cerna J, Sasek V, et al. Antifungal antibiotic of the Basidiomycete Oudemansiella mucida[J]. Folia Microbiologica, 1969(14):377-387. [11] Anke T, Oberwinkler F, Steglich W, et al. The strobilurins--new antifungal antibiotics from the basidiomycete Strobilurus tenacellus[J]. Journal of Antibiotics, 1977, 30(10):806-810. [12]Schramm G, Steglich W, Anke T, et al. Chemlnform abstract:antibiotics from basidiomycetes, III. strobilurin A and B, antifungal metabolites from Strobilurus Tenacellus[J]. Cheminform, 1978, 43(9):1779-1784. [13]Anke T, Besl H, Mocek U, et al. Antibiotics from basidiomycetes. XVIII. Strobilurin C and oudemansin B, two new antifungal metabolites from Xerula species(Agaricales)[J]. Journal of Antibiotics, 1983, 36(6):661-666. [14]Bartlett DW, Clough JM, Godwin JR, et al. The strobilurin fungicides[J]. Pest Manag Sci, 2002, 58(7):649-662. [15]Isamu Y, Makoto F. Recent topics on action mechanisms of fungicides[J]. J Pestic Sci, 2005, 30(2):67-74. [16]Battaglin WA, Sandstrom MW, Kuivila KM, et al. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005-2006[J]. Water Air Soil Pollution, 2011, 218(1):307-322. [17] Esteve K, Poupot C, Dabert P, et al. A Saccharomyces cerevisiae-based bioassay for assessing pesticide toxicity[J]. J Ind microbiol Biotechnol, 2009, 36(12):1529-1534. [18]Cui F, Chai T, Liu X, et al. Toxicity of three strobilurins(kresoxim-methyl, pyraclostrobin, and trifloxystrobin)on Daphnia magna[J]. Environ Toxicol Chem, 2017, 36(1):182-189. [19]Jorgensen LF, Kjaer J, Olsen P, et al. Leaching of azoxystrobin and its degradation product R234886 from Danish agricultural field sites[J]. Chemosphere, 2012, 88(5):554-562. [20]许静, 孔德洋, 宋宁慧, 等. 甲氧丙烯酸酯类杀菌剂的环境降解特性研究[J]. 农业环境科学学报, 2013, 32(10):2005-2011. [21]Olsvik PA, Kroglund F, Finstad B, et al. Effects of the fungicide azoxystrobin on Atlantic salmon(Salmo salar L. )smolt[J]. Ecotoxicol Environ Saf, 2010, 73(8):1852-1861. [22]Gustafsson K, Blidberg E, Elfgren IK, et al. Direct and indirect effects of the fungicide azoxystrobin in outdoor brackish water microcosms[J]. Ecotoxicology, 2010, 19(2):431-444. [23] Garanzini DS, Menone ML. Azoxystrobin causes oxidative stress and DNA damage in the aquatic macrophyte Myriophyllum quitense[J]. Bull Environ Contam Toxicol, 2015, 94(2):146-151. [24] 张晶, 贾鹏龙, 陈秋初, 等. 14种农药对9·芙家蚕(Bombyxmori)的急性毒性评价[J]. 农药科学与管理, 2016(11):44-51. [25]郭耀全, 张晶, 梁慧君, 等. 4种低毒非桑园农药对家蚕的残毒试验[J]. 广东蚕业, 2016, 50(2):20-23. [26]吕铭潇, 张骞. 7种杀菌剂对家蚕的急性毒性评价[J]. 生物灾害科学, 2014, 37(2):140-143. [27]金华超, 尹晓辉, 朱国念. 四种杀菌剂对玉米螟赤眼蜂酚氧化酶活性的影响[J]. 昆虫学报, 2013, 56(2):136-144. [28]张宁, 张传清, 朱国念, 等. 甲氧基丙烯酸酯类和三唑类杀菌剂对斑痣悬茧蜂的毒性[J]. 农药学学报, 2016, 18(3):387-392. [29]Cayir A, Coskun M, Coskun M. Micronuclei, nucleoplasmic bridges, and nuclear buds induced in human lymphocytes by the fungicide signum and its active ingredients(boscalid and pyraclostrobin)[J]. Environ Toxicol, 2014, 29(7):723-732. [30]Regueiro J, Olguin N, Simal-Gandara J, et al. Toxicity evaluation of new agricultural fungicides in primary cultured cortical neurons[J]. Environmental Research, 2015, 140:37-44. [31] Pearson BL, Simon JM, Mccoy ES, et al. Identification of chemicals that mimic transcriptional changes associated with autism, brain aging and neurodegeneration[J]. Nat Communi, 2016, 7:11173. [32]肖能文, 赵彩云, 王学霞, 等. 用于土壤污染生态毒理诊断的蚯蚓生物标志物研究[J]. 江西农业学报, 2012, 24(1):137-143. [33]何巧力, 颜增光, 汪群慧, 等. 利用蚯蚓回避试验方法评价萘污染土壤的生态风险[J]. 农业环境科学学报, 2007, 26(2):538- 543. [34]邓勋飞, 詹宇, 王祥云, 等. 蔬菜地农药施用的土壤生态风险评估[J]. 农业环境科学学报, 2014, 33(10):1920-1927. [35]Han Y, Zhu L, Wang J, et al. Integrated assessment of oxidative stress and DNA damage in earthworms(Eisenia fetida)exposed to azoxystrobin[J]. Ecotoxicology and Environmental Safety, 2014, 107:214-219. [36]王作彬. 吡唑醚菌酯和氟嘧菌酯对蚯蚓的氧化胁迫及DNA损伤[D]. 泰安:山东农业大学, 2016. [37]Beelen PV, Doelman P. Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment[J]. Chemosphere, 1997, 34(3):455-499. [38]Wassila R, Karine L, Emile LA, et al. Effects of pesticides on soil enzymes:a review[J]. Environmental Chemistry Letters, 2014, 12(2):257-273 . [39]Bacmaga M, Kucharski J, Wyszkowska J. Microbial and enzymatic activity of soil contaminated with azoxystrobin[J]. Environmental Monitoring and Assessment, 2015, 187(10):615-629. [40] Lopes FM, Batista KA, Batista GL, et al. Biodegradation of epoxyconazole and piraclostrobin fungicides by Klebsiella sp. from soil[J]. World J Microbiol Biotechnology, 2010, 26(7):1155-1161. [41]Clinton B, Warden A, Haboury S, et al. Bacterial degradation of strobilurin fungicides:a role for a promiscuous methyl esterase activity of the subtilisin proteases?[J]. Biocatalysis and Biotransformation, 2011, 29(4):119-129. [42]Howell CC, Semple KT, Bending GD. Isolation and characterisation of azoxystrobin degrading bacteria from soil[J]. Chemosphere, 2014, 95:370-378. [43]Chen S, Deng Y, He F, et al. Isolation and characterization of a azoxystrobin-degrading bacterial strain Ochrobactrum anthropi SH14[C]. 中国植物病理学会青年学术研讨会论文选编. 北京:中国农业出版社, 2015. [44]Chen S, Lin Q, Xiao Y, et al. Monooxygenase, a novel beta-cypermethrin degrading enzyme from Streptomyces sp[J]. PLoS One, 2013, 8(9):e75450. [45]Hamdy B. Review of strobilurin fungicide chemicals[J]. J Environ Sci Health B, 2007, 42(4):441-451. [46] Cycoń M, Wojcik M, Piotrowska-Seget Z. Biodegradation of the organophosphorus insecticide diazinon by Serratia sp. and Pseudo-monas sp. and their use in bioremediation of contaminated soil[J]. Chemosphere, 2009, 76(4):494-501. [47]Chen S, Liu C, Peng C, et al. Biodegradation of chlorpyrifos and its hydrolysis product 3, 5, 6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01[J]. PLoS One, 2012, 7(10):e47205. [48]Zhang Q, Wang B, Cao Z, et al. Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil[J]. Journal of Hazardous Materials, 2012, 221-222:178-184. [49]Yang L, Chen S, Hu M, et al. Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils[J]. Biology and Fertility of Soils, 2011, 47(8):917-923. [50]Plangklang P, Reungsang A. Bioaugmentation of carbofuran residues in soil using Burkholderia cepacia PCL3 adsorbed on agricultural residues[J]. International Biodeterioration & Biodegradation, 2009, 63(4):515-522. [51]Chen S, Hu M, Liu J, et al. Biodegradation of beta-cypermethrin and 3-phenoxybenzoic acid by a novel Ochrobactrum lupini DG-S-01[J]. J Hazard Mater, 2011, 187(1-3):433-440. [52]Chen S, Geng P, Xiao Y, et al. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01[J]. Appl Microbiol Biotechnol, 2012, 94(2):505-515. [53]Chen S, Dong Y, Chang C, et al. Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway[J]. Bioresource Technology, 2013, 132:16-23. [54]Chen S, Chang C, Deng Y, et al. Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potential for bioremediation of pyrethroid-contaminated soils[J]. Journal of Agricultural and Food Chemistry, 2014, 62(10):2147-2157. [55]Xiao Y, Chen S, Gao Y, et al. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis, BSF01 and its biodegradation pathway[J]. Appl Microbiol Biotechnol, 2015, 99(6):2849-2859. [56]Chen S, Deng Y, Chang C, et al. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19[J]. Scientific Reports, 2015, 5:8784. |