生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 224-235.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0661
肖小双1(), 安雪姣1, 叶晗媛1, 王林平2, 钟斌1, 张庆华1()
收稿日期:
2020-05-28
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
肖小双,男,硕士研究生,研究方向:环境微生物工程;E-mail: 基金资助:
XIAO Xiao-shuang1(), AN Xue-jiao1, YE Han-yuan1, WANG Lin-ping2, ZHONG Bin1, ZHANG Qing-hua1()
Received:
2020-05-28
Published:
2021-02-26
Online:
2021-02-26
摘要:
硫氰酸盐(SCN-)是一种常见的金矿、纺织、印染和焦化工业污染物,有毒性、给生物安全带来危害。目前,随着现代生物技术的发展,通过高通量测序、转录组测序、DNA指纹图谱和靶向基因扩增等技术已经阐明了微生物降解硫氰酸盐的群落结构、遗传和代谢多样性,表明微生物降解硫氰酸盐是最可行的修复方法。综述了降解硫氰酸盐的微生物种类,碳、硫和氮循环的影响,降解硫氰酸盐的机理,讨论了微生物降解硫氰酸盐的意义及存在的问题,旨为处理废水中硫氰酸盐提供理论支持。
肖小双, 安雪姣, 叶晗媛, 王林平, 钟斌, 张庆华. 废水中硫氰酸盐的微生物降解研究进展[J]. 生物技术通报, 2021, 37(2): 224-235.
XIAO Xiao-shuang, AN Xue-jiao, YE Han-yuan, WANG Lin-ping, ZHONG Bin, ZHANG Qing-hua. Research Progress on Microbial Degradation of Thiocyanate in Wastewater[J]. Biotechnology Bulletin, 2021, 37(2): 224-235.
分类依据 | 菌株类型 | 参考文献 |
---|---|---|
自养菌 | Thiobacillus thioparus、Paracoccus spp.、Thiobacillus denitrificans、Thiohalophilus thiocyanoxidans、Halothiobacillus spp.、Thioalkalivibrio paradoxus、Thioalkalivibrio thiocyanoxidans、Thioalkalivibrio thiocyanodenitrificans、T. denitrificans、T. thiocyanodenitrificans and Pseudomonas aeuginosa | [ |
异养菌 | Ralstonia、Sphingomonas、Klebsiella、Pseudomonas、Arthrobacter and Methylobacterium | [ |
混合营养菌 | Burkholderia phytofirmans | [ |
真菌 | Acremonium strictum、Schizophyllum commune、Polyporus arcularius、Ganoderma applanatum、Pleurotus eryngii、Clavariadelphus truncatus、Cerrena unicolor、Trametes versicolor、Ganoderma lucidum and Schizophyllum commune | [ |
表1 硫氰酸盐降解菌的分类
分类依据 | 菌株类型 | 参考文献 |
---|---|---|
自养菌 | Thiobacillus thioparus、Paracoccus spp.、Thiobacillus denitrificans、Thiohalophilus thiocyanoxidans、Halothiobacillus spp.、Thioalkalivibrio paradoxus、Thioalkalivibrio thiocyanoxidans、Thioalkalivibrio thiocyanodenitrificans、T. denitrificans、T. thiocyanodenitrificans and Pseudomonas aeuginosa | [ |
异养菌 | Ralstonia、Sphingomonas、Klebsiella、Pseudomonas、Arthrobacter and Methylobacterium | [ |
混合营养菌 | Burkholderia phytofirmans | [ |
真菌 | Acremonium strictum、Schizophyllum commune、Polyporus arcularius、Ganoderma applanatum、Pleurotus eryngii、Clavariadelphus truncatus、Cerrena unicolor、Trametes versicolor、Ganoderma lucidum and Schizophyllum commune | [ |
影响因素 | 影响原因 | 参考文献 |
---|---|---|
温度 | 温度的降低和升高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
pH | pH的过低和过高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
溶解氧 | 好氧微生物需要高浓度的溶解氧,厌氧微生物则需要低浓度的溶解氧 | [ |
硫氰酸盐浓度 | 硫氰酸盐浓度过高会出现底物抑制 | [ |
无机盐 | 无机盐是微生物生长、代谢和繁殖过程所必需的 | [ |
外加营养物质(C源或N源) | 有些微生物单一利用硫氰酸盐中的碳源或者氮源,这就需要相对应的补充氮源或碳源 | [ |
代谢产物浓度 | 产物浓度过高会抑制微生物降解硫氰酸盐 | [ |
表2 微生物降解硫氰酸盐的主要影响因素
影响因素 | 影响原因 | 参考文献 |
---|---|---|
温度 | 温度的降低和升高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
pH | pH的过低和过高会影响微生物的生长、代谢和繁殖以及SCNase的活性 | [ |
溶解氧 | 好氧微生物需要高浓度的溶解氧,厌氧微生物则需要低浓度的溶解氧 | [ |
硫氰酸盐浓度 | 硫氰酸盐浓度过高会出现底物抑制 | [ |
无机盐 | 无机盐是微生物生长、代谢和繁殖过程所必需的 | [ |
外加营养物质(C源或N源) | 有些微生物单一利用硫氰酸盐中的碳源或者氮源,这就需要相对应的补充氮源或碳源 | [ |
代谢产物浓度 | 产物浓度过高会抑制微生物降解硫氰酸盐 | [ |
[1] | Budaev SL, Batoeva AA, Tsybikoya BA. Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion[J]. Minerals Engineering, 2015,81:88-95. |
[2] | Gould WD, King M, Mohapatra BR, et al. A critical review on destruction of thiocyanate in mining effluents[J]. Minerals Engineering, 2012,34:38-47. |
[3] |
Watts MP, Gan HM, Peng LY, et al. In situ stimulation of thiocyanate biodegradation through phosphate amendment in gold mine tailings water[J]. Environmental Science & Technology, 2017,51:13353-13362.
URL pmid: 29064247 |
[4] | 张玉秀, 尹莉, 李海波, 等. 焦化废水处理厂活性污泥对硫氰化物的降解机制[J]. 环境化学, 2016,35(1):118-124. |
Zhang YX, Yin L, Li HB, et al. Biodegradation mechanism of thiocyanate by activated sludge from coking wastewater treatment plant[J]. Environmental Chemistry, 2016,35(1):118-124. | |
[5] |
Alessandro B, Victor W, Maciej SK, et al. Ammonia, thiocyanate, and cyanate removal in an aerobic up-flow submerged attached growth reactor treating gold mine wastewater[J]. Chemosphere, 2020,243:125395.
doi: 10.1016/j.chemosphere.2019.125395 URL pmid: 31765897 |
[6] | Guamán Guadalima MP, Nieto Monteros DA. Evaluation of the rotational speed and carbon source on the biological removal of free cyanide present on gold mine wastewater, using a rotating biological contactor[J]. Journal of Water Process Engineering, 2018,23:84-90. |
[7] | 邱陆明, 刘影, 张宇, 等. 印染废水中极高质量浓度氰化物处理试验研究[J]. 黄金, 2018,39(3):71-73, 76. |
Qiu LM, Liu Y, Zhang Y, et al. Experimental study on the treatment of extremely high mass concentration cyanide in printing and dyeing wastewater[J]. Gold, 2018,39(3):71-73, 76. | |
[8] | Raper E, Fisher R, Anderson DR, et al. Nitrogen removal from coke making wastewater through a pre-denitrification activated sludge process[J]. Science of the Total Environment, 2019,666:31-38. |
[9] | Pan JX, Ma JD, Wu HZ, et al. Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process[J]. Bioresource Technology, 2018,267:30-37. |
[10] |
Pan JX, Wei CH, Fu BB, et al. Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate[J]. Bioresource Technology, 2018,252:20-27.
doi: 10.1016/j.biortech.2017.12.059 URL pmid: 29306125 |
[11] |
Eleanor R, Tom S, Raymond F, et al. Characterisation of thiocyanate degradation in a mixed culture activated sludge process treating coke wastewater[J]. Bioresource Technology, 2019,288:121524.
doi: 10.1016/j.biortech.2019.121524 URL pmid: 31154279 |
[12] |
Oshiki M, Masuda Y, Yamaguchi T, et al. Synergistic inhibition of anaerobic ammonium oxidation(anammox)activity by phenol and thiocyanate[J]. Chemosphere, 2018,213:498-506.
doi: 10.1016/j.chemosphere.2018.09.055 URL pmid: 30245226 |
[13] | Sharma VK, Yngard RA, Cabelli DE, et al. Ferrate(VI)and ferrate(V)oxidation of cyanide, thiocyanate, and copper(I)cyanide[J]. Radiation Physics and Chemistry, 2008,77(6):761-767. |
[14] |
Oulego P, Collado S, Garrido L, et al. Wet oxidation of real coke wastewater containing high thiocyanate concentration[J]. Journal of Environmental Management, 2014,132:16-23.
doi: 10.1016/j.jenvman.2013.10.011 URL pmid: 24269931 |
[15] | Ding J. Recovery gold cyanide using inheretly conducing polymers[J]. Polymer International, 2003,52(1):51-55. |
[16] | 刘二博, 赵兵强, 张明亮, 等. 化学沉淀法脱除HPF脱硫废液中的硫氰酸盐[J]. 环境工程学报, 2016,10(3):1328-1332. |
Liu RB, Zhao BQ, Zhang ML, et al. Removal of thiocyanate from HPF desulfurization waste solution with chemical precipitation[J]. Chinese Journal of Environmental Engineering, 2016,10(3):1328-1332. | |
[17] |
Zaia DAM, de Carvalho PCG, Samulewski RB, et al. Unexpected thiocyanate adsorption onto ferrihydrite under prebiotic chemistry conditions[J]. Origins of Life and Evolution of the Biosphere, 2020,50:57-76.
doi: 10.1007/s11084-020-09594-w URL pmid: 32266585 |
[18] |
Vu HP, Moreau JW. Thiocyanate adsorption on ferrihydrite and its fate during ferrihydrite transformation to hematite and goethite[J]. Chemosphere, 2015,119:987-993.
doi: 10.1016/j.chemosphere.2014.09.019 URL pmid: 25303658 |
[19] | Wang J, Han Y, Li J, et al. Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization[J]. Separation and Purification Technology, 2017,177:62-70. |
[20] |
Xie F, Borowiec J, Zhang J. Synjournal of AgCl nanoparticles-loaded hydrotalcite as highly efficient adsorbent for removal of thiocyanate[J]. Chemical Engineering Journal, 2013,223:584-591.
doi: 10.1016/j.cej.2013.03.073 URL |
[21] |
Huddy RJ, Zyl AW, Hille RP, et al. Characterisation of the complex microbial community associated with the ASTERTM thiocyanate biodegradation system[J]. Minerals Engineering, 2015,76:65-71.
doi: 10.1016/j.mineng.2014.12.011 URL |
[22] | 陆洪宇, 孙亚全, 董春娟, 等. 焦化废水中COD、挥发酚和硫氰化物同步高效去除[J]. 环境工程学报, 2014,8(7):2848-2852. |
Lu HY, Sun YQ, Dong CJ, et al. Removal of COD, volatile phenol and thiocyanate from coking wastewater[J]. Chinese Journal of Environmental Engineering, 2014,8(7):2848-2852. | |
[23] | Shoji T, Sueoka K, Satoh H, et al. Identification of the microbial community responsible for thiocyanate and thiosulfate degradation in an activated sludge process[J]. Process Biochem, 2014,49(7):1176-1181. |
[24] |
Villemur R, Juteau P, Bougie V, Mnard J, et al. Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of thiocyanate and cyanate[J]. Bioresource Technology, 2015,181:254-262.
doi: 10.1016/j.biortech.2015.01.051 URL pmid: 25656870 |
[25] |
Watts M, Moreau J. New insights into the genetic and metabolic diversity of thiocyanate-degrading microbial consortia[J]. Applied Microbiology and Biotechnology, 2016,100(3):1101-1108.
doi: 10.1007/s00253-015-7161-5 URL pmid: 26596573 |
[26] |
Mahendran R, Thandeeswaran M, Vijayasarathy M, et al. Microbial(Enzymatic)degradation of cyanide to produce pterins as cofactors[J]. Current Microbiology, 2020,77(4):578-587.
URL pmid: 31111225 |
[27] | Wynand A, Susan TL, Rober HP, et al. Determining an effective operating window for a thiocyanate-degrading mixed microbial community[J]. Journal of Environmental Chemical Engineering, 2017,5(1):660-666. |
[28] |
Watts MP, Spurr LP, Gan HM, et al. Characterization of an autotrophic bioreactor microbial consortium degrading thiocyanate[J]. Applied Microbiology and Biotechnology, 2017,101(14):5889-5901.
doi: 10.1007/s00253-017-8313-6 URL pmid: 28510801 |
[29] |
Watts MP, Spurr LP, Wick R, et al. Genome-resolved metagenomics of an autotrophic thiocyanate-remediating microbial bioreactor consortium[J]. Water Research, 2019,158:106-117.
doi: 10.1016/j.watres.2019.02.058 URL pmid: 31022528 |
[30] |
Oshiki M, Fukushima T, Kawano S, et al. Thiocyanate degradation by a highly enriched culture of the neutrophilic halophile Thiohalobacter sp. strain FOKN1 from activated sludge and genomic insights into thiocyanate metabolism[J]. Microbes and Environments, 2019,34(4):402-413.
doi: 10.1264/jsme2.ME19068 URL pmid: 31631078 |
[31] |
Mekuto L, Ntwampe SKO, Mudumbi JBN. Microbial communities associated with the co-metabolism of free cyanide and thiocyanate under alkaline conditions[J]. 3 Biotech, 2018,8(2):93.
doi: 10.1007/s13205-018-1124-3 URL pmid: 29430355 |
[32] | Rahman SF, Kantor RS, Huddy R, et al. Genome-resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings[J]. Microbiology Open, 2017,6(3):e00446. |
[33] | Kelly DP, Wood AP. Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the β-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain[J]. International Journal of Systematic and Evolutionary Microbiology, 2000,50(2):547-550. |
[34] |
Beller HR, Chain PSG, Letain TE, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of Bacteriology, 2006,188(4):1473-1488.
doi: 10.1128/JB.188.4.1473-1488.2006 URL pmid: 16452431 |
[35] | Bezsudnova EY, Sorokin DY, Tikhonova TV, et al. Thiocyanate hydrolase, the primary enzyme initiating thiocyanate degradation in the novel obligately chemolithoautotrophic halophilic sulfur-oxidizing bacterium Thiohalophilus thiocyanoxidans[J]. Biochimica et Biophysica Acta, Proteins and Proteomics, 2008,1774(12):1563-1570. |
[36] | Sorokin DY, Abbas B, Zessen E, et al. Isolation and characterization of an obligately chemolithoautotrophic Halothiobacillus strain capable of growth on thiocyanate as an energy source[J]. FEMS Microbiogy Letters, 2014,354(1):69-74. |
[37] | Sorokin DY, Tourova TP, Lysenko AM, et al. Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov. , novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes[J]. International Journal of Systematic and Evolutionary Microbiology, 2002,52(2):657-664. |
[38] | Sorokin DY, Tourova TP, Antipov AN, et al. Anaerobic growth of the haloalkaliphilic denitrifying sulfur-oxidizing bacterium Thialkalivibrio thiocyanodenitrificans sp. nov. with thiocyanate[J]. Microbiology, 2004,150(7):2435-2442. |
[39] | Via MJJ, Fernandez PB, Fernandez MC, et al. Photochemical degradation of cyanides and thiocyanates from an industrial wastewater[J]. Molecules, 2019,24(7):1373. |
[40] |
Siraporn P, Nootjalee S, Rattana T. Development of a mixed microbial culture for thiocyanate and metal cyanide degradation[J]. 3 Biotech, 2017,7(3):191.
URL pmid: 28664381 |
[41] |
Sorokin DY, Tourova TP, Lysenko AM, et al. Microbial thiocyanate utilization under highly alkaline conditions[J]. Appl Environ Microbiol, 2001,67(2):528-538.
doi: 10.1128/AEM.67.2.528-538.2001 URL pmid: 11157213 |
[42] |
Spurr LP, Watts MP, Gan HM, et al. Biodegradation of thiocyanate by a native groundwater microbial consortium[J]. PeerJ, 2019,7:e6498.
doi: 10.7717/peerj.6498 URL pmid: 30941266 |
[43] |
Plessis C, Barnard P, Muhlbauer R, et al. Empirical model for the autotrophic biodegradation of thiocyanate in an activated sludge reactor[J]. Letters in Applied Microbiology, 2001,32(2):103-107.
doi: 10.1046/j.1472-765x.2001.00859.x URL pmid: 11169052 |
[44] |
Lee C, Kim J, Chang J, et al. Isolation and identification of thiocyanate utilizing chemolithotrophs from gold mine soils[J]. Biodegradation, 2003,14(3):183-188.
doi: 10.1023/a:1024256932414 URL pmid: 12889608 |
[45] | Vu HP, Moreau JW. Effects of environmental parameters on thiocyanate biodegradation by Burkholderia phytofirmans candidate strain ST01hv[J]. Environmental Engineering Science, 2018,35(1):62-66. |
[46] |
Irina K, Halevy I, Alexey KJ. Kinetics of decomposition of thiocyanate in natural aquatic systems[J]. Environmental Science & Technology, 2018,52(3):1234-1243.
URL pmid: 29283564 |
[47] | Lukhanyo M, Kim YM, Maxwell MN, et al. Heterotrophic nitrification-aerobic denitrification potential of cyanide and thiocyanate degrading microbial communities under cyanogenic conditions[J]. Environmental Engineering Research, 2019,24(2):254-262. |
[48] |
Kim J, Cho KJ, Han G, et al. Effects of temperature and pH on the biokinetic properties of thiocyanate biodegradation under autotrophic conditions[J]. Water Research, 2013,47(1):251-258.
doi: 10.1016/j.watres.2012.10.003 URL pmid: 23137831 |
[49] |
Lukhanyo M, Seteno KON, Margaret K, et al. Free cyanide and thiocyanate biodegradation by Pseudomonas aeruginosa STK 03 capable of heterotrophic nitrification under alkaline conditions[J]. 3 Biotech, 2016,6(1):6.
doi: 10.1007/s13205-015-0317-2 URL pmid: 28330076 |
[50] | Vu H, Mu A, Moreau J. Biodegradation of thiocyanate by a novel strain of burkholderia phytofirmans from soil contaminated by gold mine tailings[J]. Letters in Applied Microbiology, 2013,57(4):368-372. |
[51] | Kwon HK, Woo SH, Park JM. Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants[J]. Biotechnology Letters, 2002,24(16):1347-1351. |
[52] |
Ozel YK, Gedikli S, Aytar P, et al. New fungal biomasses for cyanide biodegradation[J]. Journal of Bioscience and Bioengineering, 2010,110(4):431-435.
doi: 10.1016/j.jbiosc.2010.04.011 URL pmid: 20547364 |
[53] |
Ryu BG, Kim W, Nam K, et al. A comprehensive study on algal-bacterial communities shift during thiocyanate degradation in a microalga-mediated process[J]. Bioresource Technology, 2015,191:496-504.
doi: 10.1016/j.biortech.2015.03.136 URL pmid: 25911193 |
[54] |
Kantor RS, van Zyl AW, van Hille RP, et al. Bioreactor microbial ecosystems for thiocyanate and cyanide degradation unravelled with genome-resolved metagenomics[J]. Environmental Microbiology, 2015,17(12):4929-4941.
doi: 10.1111/1462-2920.12936 URL pmid: 26031303 |
[55] | Stott MB, Franzmann PD, Zappia LR. Thiocyanate removal from saline CIP process water by a rotating biological contactor, with reuse of the water for bioleaching[J]. Hydrometallurgy, 2001,62(2):93-105. |
[56] |
Chaudhari AU, Kodam KM. Biodegradation of thiocyanate using co-culture of Klebsiella pneumoniae and Ralstonia sp.[J]. Applied Microbiology and Biotechnology, 2010,85(4):1167-1174.
URL pmid: 19838695 |
[57] |
Dev JR, Zhang Y, Gao YX, et al. Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment:Correspondence of performance to microbial community functional structure[J]. Water Research, 2017,121:338-348.
doi: 10.1016/j.watres.2017.05.045 URL pmid: 28570873 |
[58] |
Hussain A, Ogawa T, Saito M, et al. Cloning and expression of a gene encoding a novel thermostable thiocyanate-degrading enzyme from a mesophilic alphaproteobacteria strain THI201[J]. Microbiology, 2013,159:2294-2302.
doi: 10.1099/mic.0.063339-0 URL pmid: 24002749 |
[59] |
Tamas F, Anna SJ, Robert G. Polyphasic bacterial community analysis of an aerobic activated sludge removing phenols and thiocyanate from coke plant effluent[J]. Bioresource Technology, 2010,101(10):3406-3414.
doi: 10.1016/j.biortech.2009.12.053 URL pmid: 20093025 |
[60] | Grigor’eva NV, Kondrat’eva TF, Krasil’nikova EN, et al. Mecha-nism of cyanide and thiocyanate decomposition by an association of Pseudomonas putida and Pseudomonas stutzeri strains[J]. Microbiology, 2006,75(3):266-273. |
[61] |
Palatinszky M, Herbold C, Jehmlich N, et al. Cyanate as an energy source for nitrifiers[J]. Nature, 2015,524(7563):105-108.
doi: 10.1038/nature14856 URL pmid: 26222031 |
[62] |
Kim SW, Fushinobu S, Zhou S. et al. Genes encoding copper-containing nitrite reductase:Originating from the protomitochondrion[J]. Applied and Environmental Microbiology, 2009,75(9):2652-2658.
doi: 10.1128/AEM.02536-08 URL pmid: 19270125 |
[63] | Cameron1 S, Paul L. Thiocyanate degradation during activated sludge treatment of coke-ovens wastewater[J]. Biochemical Engineering Journal, 2007,34(2):122-130. |
[64] |
Berben T, Balkema C, Sorokin DY, et al. Analysis of the genes involved in thiocyanate oxidation during growth in continuous culture of the haloalkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio thiocyanoxidans ARh 2T using transcriptomics[J]. Msystems, 2017, 2(6): e00102-17.
URL pmid: 29285524 |
[65] | Mekuto L, Ntwampe SKO, Mudumbi JBN, et al. Metagenomic data of free cyanide and thiocyanate degrading bacterial communities[J]. Data In Brief, 2017,13(1):738-741. |
[66] |
Kantor RS, Huddy RJ, Iyer R, et al. Genome-resolved meta-omics ties microbial dynamics to process performance in biotechnology for thiocyanate degradation[J]. Environmental Science & Technology, 2017,51(5):2944-2953.
doi: 10.1021/acs.est.6b04477 URL pmid: 28139919 |
[67] | Robert J. Huddy RK, Wynand RP, et al. Analysis of the microbial community associated with a bioprocess system for bioremediation of thiocyanate- and cyanide-laden mine water effluents[J]. Advanced Materials Research, 2015,1130:614-617. |
[68] |
Takahiro O, Keiichi N, Masahiko S, et al. Carbonyl sulfide hydrolase from Thiobacillus thioparus strain THI115 is one of the β-carbonic anhydrase family enzymes[J]. Journal of the American Chemical Society, 2013,135(10):3818-3825.
URL pmid: 23406161 |
[69] |
Chen X, Yang L, Sun J, et al. Modelling of simultaneous nitrogen and thiocyanate removal through coupling thiocyanate-based denitrification with anaerobic ammonium oxidation[J]. Environmental Pollution, 2019,253:974-980.
URL pmid: 31352189 |
[70] |
Rashad K, Omar1 AZ. Expression of the cyanobacterial enzyme cyanase increases cyanate metabolism and cyanate tolerance in Arabidopsis[J]. Environmental Science & Pollution Research, 2017,24(12):11825-11835.
URL pmid: 28343358 |
[71] |
Zarlenga DS, Mitreva M, Thompson P, et al. A tale of three kingdoms:members of the Phylum Nematoda independently acquired the detoxifying enzyme cyanase through horizontal gene transfer from plants and bacteria[J]. Parasitology, 2019,146(4):445-452.
doi: 10.1017/S0031182018001701 URL pmid: 30301483 |
[72] |
Mekuto L, Alegbeleye OO, Ntwampe SKO, et al. Co-metabolism of thiocyanate and free cyanide by Exiguobacterium acetylicum and Bacillus marisflavi under alkaline conditions[J]. 3 Biotech, 2016,6(2):173.
doi: 10.1007/s13205-016-0491-x URL pmid: 28330245 |
[73] |
Stratford J, Dias AEXO, Knowles CJ. The utilization of thiocyanate as a nitrogen source by a heterotrophic bacterium:the degradative pathway involves formation of ammonia and tetrathionate[J]. Microbiology, 1994,140:2657-2662.
URL pmid: 8000536 |
[74] |
Fux C, Velten S, Carozzi V, et al. Efficient and stable nitritation and denitritation of ammonium-rich sludge dewatering liquor using an SBR with continuous loading[J]. Water research, 2006,40(14):2765-2775.
doi: 10.1016/j.watres.2006.05.003 URL pmid: 16815527 |
[75] |
Schaubroeck T, De CH, Weissenbacher N, et al. Environmental sustainability of an energy self-sufficient sewage treatment plant:improvements through DEMON and co-digestion[J]. Water Research, 2015,74:166-179.
doi: 10.1016/j.watres.2015.02.013 URL pmid: 25727156 |
[76] |
Broman E, Jawad A, Wu XF, et al. Low temperature, autotrophic microbial denitrification using thiosulfate or thiocyanate as electron donor[J]. Biodegradation, 2017,28(4):287-301.
doi: 10.1007/s10532-017-9796-7 URL pmid: 28577026 |
[77] |
Chung J, Amin K, Kim S, et al. Autotrophic denitrification of nitrate and nitrite using thiosulfate as an electron donor[J]. Water Research, 2014,58:169-178.
doi: 10.1016/j.watres.2014.03.071 URL pmid: 24755301 |
[78] |
Li P, Wang YJ, Zuo J. Nitrogen removal and N2O accumulation during hydrogenotrophic denitrification:Influence of environmental factors and microbial community characteristics[J]. Environmental Science & Technology, 2017,51(2):870-879.
doi: 10.1021/acs.est.6b00071 URL |
[79] |
Ramos C, Suarez-Ojeda ME, Carrera J. Denitritation in an anoxic granular reactor using phenol as sole organic carbon source[J]. Chemical Engineering Journal, 2016,288:289-297.
doi: 10.1016/j.cej.2015.11.099 URL |
[80] |
Pan JX, Ma JD, Wu HZ, et al. Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater[J]. Water Research, 2019,150:216-224.
URL pmid: 30528918 |
[81] | Fan C, Guo CL, Zhang JH, et al. Thiocyanate-induced labilization of schwertmannite:Impacts and mechanisms[J]. Journal of Environmental Sciences, 2019,80(6):218-228. |
[1] | 袁野, 周佳, 屈建航, 张博源, 罗宇, 李海峰. 高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究[J]. 生物技术通报, 2023, 39(7): 266-276. |
[2] | 高宇轩, 靳静晨, 徐利杉, 高雅娟, 张闻天, 李晨晨, 张国伟, 靳永胜. 耐盐异养硝化-好氧反硝化菌Bacillus megatherium N07的分离及脱氮特性[J]. 生物技术通报, 2022, 38(7): 247-257. |
[3] | 马青云, 江旭, 李情情, 宋金龙, 周义清, 阮志勇. 烟嘧磺隆降解菌Chryseobacterium sp. LAM-M5的分离、鉴定及其降解机理研究[J]. 生物技术通报, 2022, 38(2): 113-122. |
[4] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[5] | 丁丽, 曾萍, 成璐瑶, 宋永会, 胡丽娜. 一株α-苯乙胺的微生物降解菌的优选及其最佳生长条件研究[J]. 生物技术通报, 2021, 37(3): 65-74. |
[6] | 余琴, 马现永, 邓盾, 王永飞. 海氏肠球菌IDO5对猪粪废水中吲哚降解条件优化及降解途径分析[J]. 生物技术通报, 2021, 37(12): 113-123. |
[7] | 孙凯, 陈正杰, 汪登洋, 束茹玉, 吴吉, 韦凡. 固定化漆酶去除废水中双酚A[J]. 生物技术通报, 2020, 36(12): 188-198. |
[8] | 吴学玲, 周翔宇, 吴晓燕, 罗奎, 顾怡超, 周晗, 廖婉晴, 曾伟民. 四环素降解菌共培养体系构建及废水修复的群落分析[J]. 生物技术通报, 2020, 36(10): 116-126. |
[9] | 刘长荣, 张风丽, 李志勇. 固定化海洋脲酶制备及其在尿素废水处理中的应用[J]. 生物技术通报, 2019, 35(9): 75-82. |
[10] | 王亚妮, 宋金龙, 韩刚, 穆迎春, 江旭, 王金耀, 阮志勇, 李乐. 孔雀石绿降解菌群多样性及高效降解菌的降解特性分析[J]. 生物技术通报, 2019, 35(9): 150-155. |
[11] | 刘娜, 刘志敏, 宋东辉. 石油烃降解菌对邻苯二酚、苯甲酸钠降解特性的研究[J]. 生物技术通报, 2019, 35(9): 156-164. |
[12] | 李慧, 查建军, 孙庆业. 酸性矿业废水对土壤剖面中氮代谢功能基因丰度的影响[J]. 生物技术通报, 2019, 35(9): 249-256. |
[13] | 马浩天, 李润植, 张宏江, 杭伟, 崔红利. 基于微藻培养处理畜禽养殖废水的研究进展[J]. 生物技术通报, 2018, 34(11): 83-90. |
[14] | 乔能虎, 张静静, 刘德健, 汤孝胜, 郗丽君, 刘建国. 陶厄氏菌Thauera sp. K11对酚类化合物降解作用及途径研究[J]. 生物技术通报, 2017, 33(10): 184-190. |
[15] | 谭文发, 吕俊文唐东山. 生物技术处理含铀废水的研究进展[J]. 生物技术通报, 2015, 31(3): 82-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||