生物技术通报 ›› 2018, Vol. 34 ›› Issue (4): 9-15.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0108
羊国根1, 2, 程家森2
收稿日期:
2018-01-30
出版日期:
2018-04-20
发布日期:
2018-05-04
作者简介:
羊国根,男,博士,研究方向:植物与真菌互作;E-mail:yangguogen@gmail.com
基金资助:
YANG Guo-gen1, 2, CHENG Jia-sen2
Received:
2018-01-30
Published:
2018-04-20
Online:
2018-05-04
摘要: 菌核病(Sclerotinia stem rot,SSR)是我国油料作物生产中主要病害之一,严重制约长江中下游地区油菜主产区的产业发展。菌核病的病原是子囊菌门的核盘菌,是一种世界性分布的重要植物病原真菌。其寄主范围广泛,引起的菌核病对多种作物的产量和品质造成重要影响。核盘菌作为典型的死体营养型病原真菌,侵染寄主植物时通过直接杀死细胞和破坏组织攫取生长所需的营养物质。核盘菌的致病机理相对复杂,前期研究主要集中在其分泌的水解酶类(角质酶、细胞壁降解酶和蛋白酶等)和草酸在核盘菌侵染寄主植物中的作用。近些年来,越来越多的研究证实了分泌蛋白在核盘菌的致病过程中同样发挥着重要作用。分泌蛋白(效应蛋白)主要通过诱导植物细胞死亡或抑制寄主细胞的免疫反应,促进核盘菌的侵染和定殖。综述了水解酶类、草酸和分泌蛋白等在核盘菌致病机制中的作用,并对核盘菌致病机理研究进行了展望,以期为菌核病的安全防控提供理论参考。
羊国根, 程家森. 核盘菌致病机理研究进展[J]. 生物技术通报, 2018, 34(4): 9-15.
YANG Guo-gen, CHENG Jia-sen. Research Advances in Pathogenesis of Sclerotinia sclerotiorum[J]. Biotechnology Bulletin, 2018, 34(4): 9-15.
[1] Hibbett DS, Binder M, Bischoff JF, et al.A higher-level phylogenetic classification of the Fungi[J]. Mycological Research, 2007, 111(5):509-547. [2] Bolton MD, Thomma BPHJ, Nelson BD.Sclerotinia sclerotiorum(Lib. )de Bary:biology and molecular traits of a cosmopolitan pathogen[J]. Molecular Plant Pathology, 2006, 7(1):1-16. [3] Adams PB, Ayers WA.Ecology of Sclerotinia species[J]. Phytopathology, 1979, 69(8):896-899. [4] Clarkson JP, Phelps K, Whipps JM, et al.Forecasting Sclerotinia disease on lettuce:a predictive model for carpogenic germination of Sclerotinia sclerotiorum sclerotia[J]. Phytopathology, 2007, 97(5):621-631. [5] Bashi ZD, Rimmer SR, Khachatourians GG, et al.Factors governing the regulation of Sclerotinia sclerotiorum cutinase A and polygalacturonase 1 during different stages of infection[J]. Canadian Journal of Microbiology, 2012, 58(5):605-616. [6] Zhang H, Wu Q, Cao S, et al.A novel protein elicitor(SsCut)from Sclerotinia sclerotiorum induces multiple defense responses in plants[J]. Plant Molecular Biology, 2014, 86(4-5):495-511. [7] Amselem J, Cuomo CA, van Kan JA, et al. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea[J]PLoS Genetics, 2011, 7(8):e1002230. [8] Derbyshire M, Denton-Giles M, Hegedus D, et al.The complete genome sequence of the phytopathogenic fungus Sclerotinia sclerotiorum reveals insights into the genome architecture of broad host range pathogens[J]. Genome Biology and Evolution, 2017, 9(3):593-618. [9] Seifbarghi S, Borhan MH, Wei Y, et al.Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus[J]. BMC Genomics, 2017, 18(1):266. [10] Kasza Z, Vagvölgyi C, Févre M, Cotton P.Molecular characteriza-tion and in planta detection of Sclerotinia sclerotiorum endopolyga-lacturonase genes[J]. Current Microbiology, 2004, 48(3):208-213. [11] Bashi ZD, Rimmer SR, Khachatourians GG, et al.Brassica napus polygalacturonase inhibitor proteins inhibit Sclerotinia sclerotiorum polygalacturonase enzymatic and necrotizing activities and delay symptoms in transgenic plants[J]. Canadian Journal of Microbiology, 2013, 59(2):79-86. [12] Yu Y, Xiao J, Du J, et al.Disruption of the gene encoding endo-β-1, 4-xylanase affects the growth and virulence of Sclerotinia sclerotiorum[J]. Frontiers in Microbiology, 2016, 7:1787. [13] Oliveira MB, de Andrade RV, Grossi-de-Sá MF, et al. Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum-Phaseolus vulgaris interaction[J]. Frontiers in Microbiology, 2015, 6:1162. [14] Godoy G, Steadman JR, Dickman MB, et al.Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris[J]. Physiological and Molecular Plant Pathology, 1990, 37(3):179-191. [15] Heller A, Witt-Geiges T.Oxalic acid has an additional, detoxifying function in Sclerotinia sclerotiorum pathogenesis[J]. PLoS One, 2013, 8(8):e72292. [16] Uloth MB, Clode PL, You MP, et al.Calcium oxalate crystals:an integral component of the Sclerotinia sclerotiorum/Brassica carinata pathosystem[J]. PLoS One, 2015, 10(3):e0122362. [17] Guimaraes RL, Stotz HU.Oxalate production by Sclerotinia sclerotiorum deregulates guard cells during infection[J]. Plant Physiology, 2004, 136(3):3703-3711. [18] Williams B, Kabbage M, Kim HJ, et al.Tipping the balance:Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment[J]. PLoS Pathogens, 2011, 7(6):e1002107. [19] Kabbage M, Williams B, Dickman MB.Cell death control:the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum[J]. PLoS Pathogens, 2013, 9(4):e1003287. [20] Rollins JA.The Sclerotinia sclerotiorum pac1 gene is required for sclerotial development and virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(9):785-795. [21] Xu L, Xiang M, White D, et al.pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum[J]. Environmental Microbiology, 2015, 17(8):2896-2909. [22] Stergiopoulos I, de Wit PJ. Fungal effector proteins[J]. Annual Review of Phytopathology, 2009, 47(1):233-263. [23] Lo Presti L, Lanver D, Schweizer G, et al.Fungal effectors and plant susceptibility[J]. Annual Review of Plant Biology, 2015, 66(1):513-545. [24] Ciuffetti LM, Manning VA, Pandelova I, et al.Host-selective toxins, Ptr ToxA and Ptr ToxB, as necrotrophic effectors in the Pyrenophora tritici-repentis-wheat interaction[J]. New Phytologist, 2010, 187(4):911-919. [25] Marshall R, Kombrink A, Motteram J, et al.Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat[J]. Plant Physiology, 2011, 156(2):756-769. [26] Lorang J, Kidarsa T, Bradford CS, et al.Tricking the guard:exploiting plant defense for disease susceptibility[J]. Science, 2012, 338(6107):659-662. [27] Kabbage M, Yarden O, Dickman MB.Pathogenic attributes of Sclerotinia sclerotiorum:switching from a biotrophic to necrotrophic lifestyle[J]. Plant Science, 2015, 233:53-60. [28] Zhu W, Wei W, Fu Y, et al.A secretory protein of necrotrophic fungus Sclerotinia sclerotiorum that suppresses host resistance[J]. PLoS One, 2013, 8(1):e53901. [29] Guyon K, Balague C, Roby D, et al.Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum[J]. BMC Genomics, 2014, 15:336. [30] Lyu X, Shen C, Fu Y, et al.A small secreted virulence-related prot- ein is essential for the necrotrophic interactions of Sclerotinia scle-rotiorum with its host plants[J]. PLoS Pathogens, 2016, 12(2):e1005435. [31] Yang G, Tang L, Gong Y, et al.A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum[J]. New Phytologist, 2018 217(2):739-755. [32] Dickman MB, de Figueiredo P. Death be not proud-cell death control in plant fungal interactions[J]. PLoS Pathogens, 2013, 9(9):e1003542. [33] Bashi ZD, Hegedus DD, Buchwaldt L, et al.Expression and regulation of Sclerotinia sclerotiorum necrosis and ethylene-inducing peptides(NEPs)[J]. Molecular Plant Pathology, 2010, 11(1):43-53. [34] Frías M, González M, González C, et al.BcIEB1, a Botrytis cinerea secreted protein, elicits a defense response in plants[J]. Plant Science, 2016, 250:115-124. [35] González M, Brito N, González C.The Botrytis cinerea elicitor protein BcIEB1 interacts with the tobacco PR5-family protein osmotin and protects the fungus against its antifungal activity[J]. New Phytologist, 2017, 215(1):397-410. [36] Franco-Orozco B, Berepiki A, Ruiz O, et al.A new proteinaceous pathogen-associated molecular pattern(PAMP)identified in Ascomycete fungi induces cell death in Solanaceae[J]. New Phytologist, 2017, 214(4):1657-1672. [37] Xiao X, Xie J, Cheng J, et al.Novel secretory protein Ss-Caf1 of the plant-pathogenic fungus Sclerotinia sclerotiorum is required for host penetration and normal sclerotial development[J]. Molecular Plant-Microbe Interactions, 2014, 27(1):40-55. [38] Yu Y, Xiao J, Zhu W, et al.Ss-Rhs1, a secretory Rhs repeat-containing protein, is required for the virulence of Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(8):1052-1061. [39] Guo X, Stotz HU.Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling[J]. Molecular Plant-Microbe Interactions, 2007, 20(11):1384-1395. [40] Novakova M, Sasek V, Dobrev PI, et al.Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum - reassessing the role of salicylic acid in the interaction with a necrotroph[J]. Plant Physiology and Biochemistry, 2014, 80:308-317. [41] Djamei A, Schipper K, Rabe F, et al.Metabolic priming by a secreted fungal effector[J]. Nature, 2011, 478(7369):395-398. [42] Lyu X, Shen C, Fu Y, et al.Comparative genomic and transcriptional analyses of the carbohydrate-active enzymes and secretomes of phytopathogenic fungi reveal their significant roles during infection and development[J]. Scientific Reports, 2015, 5:15565. [43] Zhang WG, Fraiture M, Kolb D, et al.Arabidopsis RECEPTOR-LIKE PROTEIN30 and receptor-like kinase SUPPRESSOR OF BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi[J]. The Plant Cell, 2013, 25(10):4227-4241. [44] Liang Y, Yajima W, Davis MR, et al.Disruption of a gene encoding a hypothetical secreted protein from Sclerotinia sclerotiorum reduces its virulence on canola(Brassica napus)[J]. Canadian Journal of Plant Pathology, 2013, 35(1):46-55. [45] Kim HJ, Chen C, Kabbage M, et al.Identification and characteriz-ation of Sclerotinia sclerotiorum NADPH oxidases[J]. Appl Environ Microbiol, 2011, 77(21):7721-7729. [46] Li M, Liang X, Rollins JA.Sclerotinia sclerotiorum γ-glutamyl transpeptidase(Ss-Ggt1)is required for regulating glutathione accumulation and development of sclerotia and compound appressoria[J]. Molecular Plant-Microbe Interactions, 2012, 25(3):412-420. [47] Veluchamy S, Williams B, Kim K, et al.The CuZn superoxide dismutase from Sclerotinia sclerotiorum is involved with oxidative stress tolerance, virulence, and oxalate production[J]. Physiological and Molecular Plant Pathology, 2012, 78:14-23. [48] Xu L, Chen W.Random T-DNA mutagenesis identifies a Cu/Zn superoxide dismutase gene as a virulence factor of Sclerotinia sclerotiorum[J]. Molecular Plant-Microbe Interactions, 2013, 26(4):431-441. [49] Yu Y, Xiao J, Yang Y, et al.Ss-Bi1 encodes a putative BAX inhibitor-1 protein that is required for full virulence of Sclerotinia sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2015, 90:115-122. [50] Fan H, Yu G, Liu Y, et al.An atypical forkhead-containing transcription factor SsFKH1 is involved in sclerotial formation and is essential for pathogenicity in Sclerotinia sclerotiorum[J]. Molecular Plant Pathology, 2017, 18(7):963-975. [51] Donaldson PA, Anderson T, Lane BG, et al.Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2. 8(germin)gene are resistant to the oxalate secreting pathogen Sclerotina sclerotiorum[J]. Physiological and Molecular Plant Pathology, 2001, 59:297-307. [52] Liu F, Wang M, Wen J, et al.Overexpression of barley oxalate oxidase gene induces partial leaf resistance to Sclerotinia sclerotiorum in transgenic oilseed rape[J]. Plant Pathology, 2015, 64(6):1407-1416. [53] Zhang Y, Wang X, Chang X, et al.Overexpression of germin-like protein GmGLP10 enhances resistance to Sclerotinia sclerotiorum in transgenic tobacco[J]. Biochemical and Biophysical Research Communications, 2018, 497(1):160-166. [54] Cunha WG, Tinoco MLP, Pancoti HL, et al.High resistance to Sclerotinia sclerotiorum in transgenic soybean plants transformed to express an oxalate decarboxylase gene[J]. Plant Pathology, 2010, 59(4):654-660. [55] Ghosh S, Narula K, Sinha A, et al.Proteometabolomic analysis of transgenic tomato overexpressing oxalate decarboxylase uncovers novel proteins potentially involved in defense mechanism against Sclerotinia[J]. Journal of Proteomics, 2016, 143:242-253. [56] Gamir J, Darwiche R, van’t Hof P, et al. The sterol-binding activity of PATHOGENESIS-RELATED PROTEIN 1 reveals the mode of action of an antimicrobial protein[J]. The Plant Journal, 2017, 89(3):502-509. [57] Ziaei M, Motallebi M, Zamani MR, et al.Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola(Brassica napus)confers enhanced resistance to Sclerotinia sclerotiorum[J]. Biotechnology Letters, 2016, 38(6):1021-1032. [58] Albert I, Böhm H, Albert M, et al.An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity[J]. Nature Plants, 2015, 1:15140. |
[1] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[2] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[3] | 蒋晶晶, 周昭旭, 杜蕙, 吕昭龙, 王春明, 郭建国, 张新瑞, 李继平. 甘肃部分地区苹果褐腐病病原分离鉴定及拮抗细菌筛选[J]. 生物技术通报, 2023, 39(10): 209-218. |
[4] | 聂立斌, 易铃欣, 邓妍, 盛琦, 吴晓玉, 张斌. 途径工程改造谷氨酸棒杆菌产莽草酸[J]. 生物技术通报, 2022, 38(6): 93-102. |
[5] | 唐彬, 刘文彬, 李小波, 王宁, 金小宝. 美洲大蠊肠道产7-木糖紫杉烷糖基水解酶菌株的筛选及鉴定[J]. 生物技术通报, 2022, 38(3): 139-148. |
[6] | 张功友, 王一涵, 郭敏, 张婷婷, 王兵, 刘红美. 重楼中一株产纤维素酶内生真菌的分离及鉴定[J]. 生物技术通报, 2022, 38(2): 95-104. |
[7] | 赵宝顶, 吕佳, 申玉玉, 桂玲, 陈钟秀, 陈杰, 路福平, 黎明. 基于信号肽和分子伴侣策略促进大肠杆菌高效转化尿苷[J]. 生物技术通报, 2022, 38(11): 238-249. |
[8] | 陈春, 宿玲恰, 夏伟, 吴敬. 定向进化提高来源于Arthrobacter ramosus 的MTHase的热稳定性[J]. 生物技术通报, 2021, 37(3): 84-91. |
[9] | 段应策, 胡姿仪, 杨帆, 李金涛, 邬向丽, 张瑞颖. 香菇草酰乙酸水解酶基因LeOAH1克隆及表达分析[J]. 生物技术通报, 2020, 36(9): 227-234. |
[10] | 陈锐, 瞿佳, 孙晓宇, 邓媛, 门欣, 赵玲侠, 沈卫荣. 氯氰菊酯降解菌草酸青霉SSCL-5分离鉴定及降解特性[J]. 生物技术通报, 2020, 36(6): 120-127. |
[11] | 杨洪, 岳镒繁, 胡燕玲, 邓治, 代龙军, 李德军. 巴西橡胶树HbAIH基因的克隆及表达分析[J]. 生物技术通报, 2020, 36(5): 120-129. |
[12] | 杨洪, 胡燕玲, 岳镒繁, 邓治, 代龙军, 李德军. 橡胶树HbCPA基因的克隆、表达及生物信息学分析[J]. 生物技术通报, 2020, 36(11): 39-47. |
[13] | 李闯, 文正, 刘畅, 邬敏辰. 菜豆环氧水解酶归一性水解间硝基环氧苯乙烷的研究[J]. 生物技术通报, 2020, 36(1): 73-80. |
[14] | 欧云文, 刘俐君, 代军飞, 马炳, 张永光, 张杰. 非洲猪瘟病毒结构蛋白在病毒感染过程中的作用[J]. 生物技术通报, 2019, 35(6): 156-163. |
[15] | 余姝侨, 官昭瑛, 陈红. 利用大肠埃希氏菌光控基因表达系统降解多菌灵农残[J]. 生物技术通报, 2019, 35(2): 218-224. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 718
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 790
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||