[1] 任向楠, 丁钢强, 彭茂祥, 等. 大数据与营养健康研究[J]. 营养学报, 2017, 39(1):5-9. [2] 杜玲, 刘刚, 陆健, 等. 高通量测序技术的发展及其在生命科学中的应用. [J]. 中国畜牧兽医, 2014, 2014(109-116. [3] 郭明璋, 许文涛. 基于高通量测序技术的细菌非编码研究方法进展[J]. 生物技术通报, 2015, 31(4):99-104. [4] 李东萍, 郭明璋, 许文涛. 测序技术在肠道微生物中的应用研究进展[J]. 生物技术通报, 2015, 31(2):71-77. [5] Boeke JD, Church G, Hessel A, et al.The genome project-write[J]. Science, 2016, 353(6295):126-127. [6] Swerdlow H, Wu S, Harke H, et al.Capillary gel electrophoresis for DNA sequencing:laser-induced fluorescence detection with the sheath flow cuvette[J]. Journal of Chromatography A, 1990, 516(1):61-67. [7] Wang HH, Isaacs FJ, Carr PA, et al.Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257):894-898. [8] Amiram M, Haimovich AD, Fan C, et al.Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids[J]. Nat Biotechnol, 2015, 33(12):1272-1279. [9] Sternberg N, Hamilton D.Bacteriophage P1 site-specific recombination:IRecombination between loxP sites[J]. Journal of Molecular Biology, 1981, 150(4):467-486. [10] Sternberg N.Bacteriophage P1 site-specific recombination:IIIStrand exchange during recombination at lox sites[J]. Journal of Molecular Biology, 1981, 150(4):603-608. [11] Cox MM.The FLP protein of the yeast 2-microns plasmid:expression of a eukaryotic genetic recombination system in Escherichia coli[J]. Proc Natl Acad Sci USA, 1983, 80(14):4223-4227. [12] Murphy KC.Use of bacteriophage λ recombination functions to promote gene replacement in Escherichia coli[J]. J Bacteriol, 1998, 180(8):2063-2071. [13] Zhang Y, Buchholz F, Muyrers JPP, et al.A new logic for DNA engineering using recombination in Escherichia coli[J]. Nature Genetics, 1998, 20(2):123-128. [14] Ellis HM, Yu D, DiTizio T. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides[J]. Proc Natl Acad Sci USA, 2001, 98(12):6742-6746. [15] Pines G, Freed EF, Winkler JD, et al.Bacterial recombineering:genome engineering via phage-based homologous recombination [J]. ACS Synthetic Biology, 2015, 4(11):1176-1185. [16] Beumer K, Bhattacharyya G, Bibikova M, et al.Efficient gene targeting in Drosophila with zinc-finger nucleases[J]. Genetics, 2006, 172(4):2391-2403 [17] Zu Y, Tong X, Wang Z, et al.TALEN-mediated precise genome modification by homologous recombination in zebrafish[J]. Nature Methods, 2013, 10(4):329-331. [18] Jakočiūnas T, Jensen MK, Keasling JD.CRISPR/Cas9 advances engineering of microbial cell factories[J]. Metabolic Engineering 2016, 2016((34)):44-59. [19] Lambowitz AM, Zimmerly S.Group II introns:mobile ribozymes that invade DNA[J]. Cold Spring Harbor Perspectives in Biology, 2011, 3(8):a003616-a003616. [20] Chen Y, McClane BA, Fisher DJ, et al. Construction of an alpha toxin gene knockout mutant of Clostridium perfringens type A by use of a mobile group II intron[J]. Applied and Environmental Microbiology, 2005, 71(11):7542-7547. [21] Gallagher RR, Li Z, Lewis A O, et al.Rapid editing and evolution of bacterial genomes using libraries of synthetic DNA[J]. Nature Protocols, 2014, 9(10):2301-2316. [22] Wang HH, Huang PY, Xu G, et al.Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis[J]. ACS Synthetic Biology, 2012, 1(2):43-52. [23] Isaacs FJ, Carr PA, Wang HH, et al.Precise manipulation of chromosomes in vivo enables genome-wide codon replacement[J]. Science, 2011, 333(6040):348-353. [24] Ma NJ, Moonan DW, Isaacs FJ.Precise manipulation of bacterial chromosomes by conjugative assembly genome engineering[J]. Nature Protocols, 2014, 9(10):2285-2300. [25] Wang HH, Kim H, Cong L, et al.Genome-scale promoter engineering by coselection MAGE[J]. Nature Methods, 2012, 9(6):591-593. [26] Carr PA, Wang HH, Sterling B, et al.Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection[J]. Nucleic Acids Research, 2012, 40(17):e132-e132. [27] Nyerges Á, Csörgő B, Nagy I, et al.A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species[J]. Proc Natl Acad Sci USA, 2016, 113(9):2502-2507. [28] Dalia AB, McDonough EK, Camilli A. Multiplex genome editing by natural transformation[J]. Proc Natl Acad Sci USA, 2014, 111(24):8937-8942. [29] Warner JR, Reeder PJ, Karimpour-Fard A, et al.Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides[J]. Nat Biotechnol, 2010, 28(8):856-862. [30] Sandoval NR, Kim JYH, Glebes TY, et al.Strategy for directing combinatorial genome engineering in Escherichia coli[J]. Proc Natl Acad Sci USA, 2012, 109(26):10540-10545. [31] Jiang W, Bikard D, Cox D, et al.RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat Biotechnol, 2013, 31(3):233-239. [32] Standage-Beier K, Zhang Q, Wang X.Targeted large-scale deletion of bacterial genomes using CRISPR-nickases[J]. ACS Synthetic Biology, 2015, 4(11):1217-1225. [33] Ronda C, Pedersen LE, Sommer MOA, et al.CRMAGE:CRISPR optimized mage recombineering[J]. Sci Rep, 2016, 6(19452):1-11. [34] Cong L, Ran FA, Cox D, et al.Multiplex genome engineering using CRISPRCas systems[J]. Science, 2013, 339(6121):819-823. [35] Esvelt KM, Mali P, Braff JL, et al.Orthogonal Cas9 proteins for RNA-guided gene regulation and editing[J]. Nature Methods, 2013, 10(11):1116-1121. [36] Krishnakumar R, Grose C, Haft DH, et al.Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases[J]. Nucleic Acids Research, 2014, 42(14):e111-e111. [37] Pósfai G, Plunkett G, Fehér T, et al.Emergent properties of reduced-genome Escherichia coli[J]. Science, 2006, 312(5776):1044-1046. [38] Borrel G, McCann A, Deane J, et al. Genomics and metagenomics of trimethylamine-utilizing Archaea in the human gut microbiome [J]. The ISME Journal,2017, 2017(2074. [39] Ostrov N, Landon M, Guell M, et al.Design, synthesis, and testing toward a 57-codon genome[J]. Science, 2016, 353(6301):819-822. [40] 刘夺, 杜瑾, 赵广荣, 等. 合成生物学在医药及能源领域的应用[J]. 化工学报, 2011, 62(9):2391-2397. [41] 杜若曦, 郭明璋, 谢子鑫, 等. 合成生物学在改善肠道健康状态中的应用与展望[J]. 生物技术通报, 2018, 34(1):49-59. |