[1] Thompson S, Clarke AR, Pow AM, et al.Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells[J]. Cell, 1989, 56(2):313-321. [2] Urnov FD, Miller JC, Lee YL, et al.Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature, 2005, 435(7042):646-651. [3] Nakajima K, Yaoita Y.Development of a new approach for targeted gene editing in primordial germ cells using TALENs in Xenopus[J]. Biol Open, 2015, 4(3):259-266. [4] Shipman SL, Nivala J, Macklis JD, et al.CRISPR-Cas encoding of a digital movie into the genomes of a population of living bacteria[J]. Nature, 2017, 547(7663):345-349. [5] 周阳, 袁少飞, 蒋廷亚, 等. 基因组靶向修饰技术研究进展[J]. 生物学杂志, 2015, 32(5):70-75. [6] Sayeed SK, Zhao J, Sathyanarayana BK, et al.C/EBPβ(CEBPB)protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide[J]. Biochim Biophys Acta, 2015, 1849(6):583-589. [7] Salzler HR, Tatomer DC, Malek PY, et al.A sequence in the Drosophila H3-H4 promoter triggers histone locus body assembly and biosynthesis of replication-coupled histone mRNAs[J]. Dev Cell, 2013, 24(6):623-634. [8] Szulwach KE, Jin P.Integrating DNA methylation dynamics into a framework for understanding epigenetic codes[J]. Bioessays, 2014, 36(1):107-117. [9] Zhang C, Gao S, Molascon AJ, et al.Bioinformatic and proteomic analysis of bulk histones reveals PTM crosstalk and chromatin features[J]. J Proteome Res, 2014, 13(7):3330-3337. [10] Gutschner T, H#x000e4;mmerle M, Eissmann M et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells[J]. Cancer Res, 2013, 73(3):1180-1189. [11] Young IT, Verbeek PW, Mayall BH.Characterization of chromatin distribution in cell nuclei[J]. Cytometry, 1986, 7(5):467-474. [12] Liyanage VR, Rastegar M.Rett syndrome and MeCP2[J]. Neuromolecular Med, 2014, 16(2):231-264. [13] Friez MJ, Brooks SS, Stevenson RE, et al.HUWE1 mutations in Juberg-Marsidi and Brooks syndromes:the results of an X-chromosome exome sequencing study[J]. BMJ Open, 2016, 6(4):e009537. [14] 庄涵虚, 马旭东, 赖亚栋, 等. RNA干扰沉默HDAC1基因对胃癌细胞增殖、凋亡、组蛋白乙酰化和甲基化的影响[J]. 南方医科大学学报, 2014, 34(2):246-250. [15] Matoba S, Liu Y, Lu F, et al.Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation[J]. Cell, 2014, 159(4):884-895. [16] Ma Y, Zhang L, Huang X.Genome modification by CRISPR/Cas9[J]. FEBS J, 2014, 281(23):5186-5193. [17] Miyaoka Y, Berman JR, Cooper SB, et al.Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing[J]. Sci Rep, 2016, 6:23549. [18] Jinek M, Chylinski K, Fonfara I, et al.A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821. [19] Renouf B, Piganeau M, Ghezraoui H, et al.Creating cancer translocations in human cells using Cas9 DSBs and nCas9 paired nicks[J]. Methods Enzymol, 2014, 546:251-271. [20] Ran FA, Hsu PD, Lin CY, et al.Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity[J]. Cell, 2013, 154:1380-1389. [21] Kim S, Kim D, Cho SW, et al.Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Res, 2014, 24:1012-1019. [22] Stefanska B, MacEwan DJ. Epigenetics and pharmacology[J]. Br J Pharmacol, 2015, 172(11):2701-2704. [23] Xu Y, Wu F, Tan L, et al.Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells[J]. Mol Cell, 2011, 42(4):451-464. [24] Vojta A, Dobrini#x00107; P, Tadi#x00107; V, et al.Repurposing the CRISPR-Cas9 system for targeted DNA methylation[J]. Nucleic Acids Research, 2016, 44(12):5615-5628. [25] de Esch CE, Ghazvini M, Loos F, et al. Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation[J]. Stem Cell Reports. 2014, 3(4):548-555. [26] Liu XS, Wu H, Krzisch M, et al.Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene[J]. Cell, 2018, 172(5):979-992. [27] Urbach A, Bar-Nur O, Daley GQ, et al.Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells[J]. Cell Stem Cell, 2010, 6:407-411. [28] Ishihara K, Nakamoto M, Nakao M.DNA methylation-independent removable insulator controls chromatin remodeling at the HOXA locus via retinoic acid signaling[J]. Hum Mol Genet, 2016, 5(24):5383-5394. [29] Rots MG, Jeltsch A.Editing the epigenome:overview, open questions, and directions of future development[J]. Methods Mol Biol, 2018, 1767:3-18. [30] Chen, B, Gilbert, LA, Cimini, BA, et al.Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell[J]. 2013, 155:1479-1491. [31] Puchta H.Using CRISPR/Cas in three dimensions:towards synthetic plant genomes, transcriptomes and epigenomes[J]. Plant J, 2016, 87(1):5-15. [32] Danielson LS, Park DS, Rotllan N, et al.Cardiovascular dysregula-tion of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis[J]. FASEB J. 2013, 27(4):1460-1467. [33] Zhang Z, Ursin R, Mahapatra S, et al.CRISPR/CAS9 ablation of individual miRNAs from a miRNA family reveals their individual efficacies for regulating cardiac differentiation[J]. Mech Dev. 2018, 150:10-20. [34] Basak J, Nithin C.Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting[J]. Front Plant Sci, 2015, 6:1001. [35] Jiang Q, Meng X, Meng L, et al.Small indels induced by CRISPR/Cas9 in the 5' region of microRNA lead to its depletion and Drosha processing retardance[J]. RNA Biol, 2014, 11(10):1243-1249. [36] Cipolla GA.A non-canonical landscape of the microRNA system[J]. Front Genet, 2014, 5:337. [37] Doudna JA, Charpentier E.Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346(6213):1258096. [38] Huo W, Zhao G, Yin J, et al.Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells[J]. J Cancer, 2017, 8(1):57-64. [39] Ho TT, Zhou N, Huang J, et al.Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines[J]. Nucleic Acids Res, 2015, 43(3):e17. [40] Zhen S, Hua L, Liu YH, et al.Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer[J]. Oncotarget, 2017, 8(6):9634-9646. |