[1] Bokulich NA, Lewis ZT, Boundy-Mills K, et al.A new perspective on microbial landscapes within food production[J]. Curr Opin Biotechnol, 2016, 37:182-189. [2] Handelsman J, Rondon MR, Brady SF, et al.Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chem Biol, 1998, 5(10):245-249. [3] Albantoglu U, Cakar A, et al.Metagenomic analysis of the microbial community in kefir grains[J]. Food Microbiol, 2014, 41:42-51. [4] Poretsky RS, Bano N, Buchan A, et al.Analysis of microbial gene transcripts in environmental samples[J]. Applied and Environmental Microbiology, 2005, 71(7):4121-4126. [5] Reyes A, Haynes M, Hanson N, et al.Viruses in the faecal microbiota of monozygotic twins and their mothers[J]. Nat, 2010, 466(7304):334-338. [6] Lacerda C, Choe LH, Reardon KF.Metaproteomic analysis of a bacterial community response to cadmium exposure[J]. J Proteome Res, 2007, 6:1145-1152. [7] Park C, Helm RF.Application of metaproteomic analysis for studying extracellular polymeric substances(EPS)in activated sludge flocs and their fate in sludge digestion[J]. Water Sci Technol, 2008, 57:2009-2015. [8] 于仁涛, 高培基, 韩黎, 等. 宏蛋白质组学研究策略及应用[J]. 生物工程学报, 2009, 25(7):961-967. [9] Wilmes P, Heintz-Buschart A, Bond PL.A decade of metaproteomics:where we stand and what the future holds[J]. Proteomics, 2015, 15(20):3409-3417. [10] Mangiapane E, Mazzoli R, et al.Ten years of subproteome investigations in lactic acid bacteria:a key for food starter and probiotic typing[J]. J Proteomics, 2015, 127:332-339. [11] Mozzi F, Ortiz ME, et al.Metabolomics as a tool for the comprehen-sive understanding of fermented and functional foods with lactic acid bacteria[J]. Food Res Inter, 2013, 54(1):1152-1161. [12] Reaves ML, Rabinowitz JD.Metabolomics in systems mi-crobiology[J]. Curr Opin Biotechnol, 2011, 22(1):17-25. [13] Nicholson JK, Lindon JC.Systems biology:metabonomics[J]. Nat, 2008, 455(7216):1054-1056. [14] 黄强, 尹沛源, 路鑫, 等. 色谱-质谱联用技术在代谢组学中的应用[J]. 色谱, 2009, 27(5):566-572. [15] German JB, Hammock BD, Watkins SM.Metabolomics:building on a century of biochemistry to guide human health[J]. Me-tabolomics, 2005, 1(1):3-9. [16] Wolfe BE, Button JE, Santarelli M, et al.Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity[J]. Cell, 2014, 158(2):422-433. [17] Almeida M, Hébert A, Abraham AL, et al.Construction of a dairy microbial genome catalog opens new perspectives for the metagenomic analysis of dairy fermented products[J]. BMC Genomics, 2014, 15(1):1101. [18] Escobar-Zepeda A, Sanchez-Flores A, Baruch MQ.Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota[J]. Food Microbiology, 2016, 57:116-127. [19] Monnet C, Dugat-Bony E, Swennen D, et al.Investigation of the activity of the microorganisms in a reblochon-style cheese by metatranscriptomic analysis[J]. Front Microbiol, 2016, 7:536. [20] De Filippis F, Genovese A, Ferranti P, et al.Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate[J]. Sci Rep, 2016, 6:21871. [21] Dugat-Bony E, Straub C, Teissandier A, et al.Overview of a surface-ripened cheese community functioning by meta-omics analyses[J]. PLoS One, 2015, 10, e0124360. [22] Bokulich NA, Ohta M, Lee M, Mills DA.Indigenous bacteria and fungi drive traditional kimoto sake fermentations[J]. Applied and Environmental Microbiology, 2014, 80(17):5522-5529. [23] Zhang L, Zhou R, Niu M, Zheng J, Wu C.Difference of microbial community stressed in artificial pit muds for Luzhou-flavour liquor brewing revealed by multiphase culture-independent technology[J]. J Appl Microbiol, 2015, 119(5):1345-1356. [24] Bokulich NA, Thorngate JH, et al.Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate[J]. Proc Natl Acad Sci USA, 2014, 111(1):E139-148. [25] Bora SS, Keot J, Das S, et al.Metagenomics analysis of microbial communities associated with a traditional rice wine starter culture(Xaj-pitha)of Assam, India[J]. Biotech, 2016, 6(2):153. [26] Chen B, et al.Filamentous fungal diversity and community struct-ure associated with the solid state fermentation of Chinese Maotai-flavor liquor[J]. Int J Food Microbiol, 2014, 179:80-84. [27] Hu XL, Du H, Xu Y.Identification and quantification of the caproic acid-producing bacterium Clostridium kluyveri in the fermentation of pit mud used for Chinese strong-aroma type liquor production[J]. Int J Food Microbiol, 2015, 214:116-122. [28] Lu X, Wu Q, et al.Genomic and transcriptomic analyses of the Chi-nese Maotai-flavored liquor yeast MT1 revealed its unique multi-carbon co-utilization[J]. BMC Genomics, 2015, 16(1):1064. [29] Song G, Dickins BJA, Demeter J, et al.AGAPE(automated genome analysis PipelinE)for Pan-genome analysis of Saccharomyces cerevisiae[J]. PLoS One, 2015, 10(3):e0120671. [30] Zheng Q, Lin B, Wang Y, et al.Proteomic and high-throughput analysis of protein expression and microbial diversity of microbes from 30-and 300-year pit muds of Chinese Luzhou-flavor liquor[J]. Food Res Inter, 2015, 75:305-314. [31] Wu Q, Chen B, Xu Y.Regulating yeast flavor metabolism by controlling saccharification reaction rate in simultaneous saccharification and fermentation of Chinese Maotai-flavor liquor[J]. Int J Food Microbiol, 2015, 200:39-46. [32] Zhi Y, Wu Q, Du H, et al.Biocontrol of geosmin-producing Streptomyces spp. by two Bacillus strains from Chinese liquor[J]. Int J Food Microbiol, 2016, 231:1-9. [33] Jeong SH, Jung JY, et al.Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi[J]. Int J Food Microbiol, 2013, 164(1):46-53. [34] Park SE, Yoo SA, Seo SH, et al.GC-MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics[J]. LWT-Food Science and Technology, 2016, 68:313-321. [35] Jung JY, Lee SH, Kim JM, et al.Metagenomic analysis of kimchi, the Korean traditional fermented food[J]. Applied and Environmental Microbiology, 2011, 77(7):2264-2274. [36] Xu A, Wang Y, Wen J, et al.Fungal community associated with fermentation and storage of Fuzhuan brick-tea[J]. Int J Food Microbiol, 2011, 146(1):14-22. [37] Lv H, Zhang Y, Lin Z, et al.Processing and chemical constituents of Pu-erh tea:a review[J]. Food Res Inter, 2013, 53(2):608-618. [38] Tian J, Zhu Z, Wu B, et al.Bacterial and fungal communities in Pu’er tea samples of different ages[J]. J food Sci, 2013, 78(8):M1249-M1256. [39] Lyu C, Chen C, Ge F, et al.A preliminary metagenomic study of puer tea during pile fermentation[J]. Journal of the Science of Food and Agriculture, 2013, 93(13):3165-3174. [40] Zhao M, Zhang D, Su X, et al.An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea[J]. Scientific Reports, 2015, 5:10117. [41] Tan J, Dai W, Lu M, et al.Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach[J]. Food Res Inter, 2016, 79:106-113. [42] Wang Q, Gong J, Chisti Y, et al.Fungal isolates from a Pu-Erh type tea fermentation and their ability to convert tea polyphenols to theabrownins[J]. J food Sci, 2015, 80(4):M809-M817. [43] Chettri R, Tamang JP.Bacillus species isolated from tungrymbai and bekang, naturally fermented soybean foods of India[J]. Int J Food Microbiol, 2015, 197:72-76. [44] Chettri R, Bhutia MO, Tamang JP.Poly-γ-glutamic acid(PGA)-producing Bacillus species isolated from Kinema, Indian fermented soybean food[J]. Front Microbiol, 2016, 7:971. [45] Jung WY, et al.Functional characterization of bacterial communities responsible for fermentation of Doenjang:a traditional Korean fermented soybean paste[J]. Front Microbiol, 2016, 7:827. [46] Lee MH, Lee J, Nam YD, et al.Characterization of antimicrobial lipopeptides produced by Bacillus sp. LM7 isolated from chungkookjang, a Korean traditional fermented soybean food[J]. Int J Food Microbiol, 2016, 221:12-18. [47] Zhao G, Yao Y, et al.Comparative genomic analysis of Aspergillus oryzae strains 3. 042 and RIB40 for soy sauce fermentation[J]. Int J Food Microbiol, 2013, 164(2-3):148-154. [48] Zhao G, Yao Y, Hao G, et al.Gene regulation in Aspergillus oryzae promotes hyphal growth and flavor formation in soy sauce koji[J]. Rsc Advances, 2015, 5(31):24224-24230. [49] Sulaiman J, Gan HM, Yin WF, et al.Microbial succession and the functional potential during the fermentation of Chinese soy sauce brine[J]. Front Microbiol, 2014, 5:556. [50] Li S, Li P, Feng F, et al.Microbial diversity and their roles in the vinegar fermentation process[J]. Applied Microbiology and Biotechnology, 2015, 99(12):4997-5024. [51] Wu JJ, Gullo M, Chen FS, et al.Diversity of Acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars[J]. Current Microbiology, 2010, 60(4):280-286. [52] Wang ZM, Lu ZM, Yu YJ, et al.Batch-to-batch uniformity of bacterial community succession and flavor formation in the fermentation of Zhenjiang aromatic vinegar[J]. Food Microbiology, 2015, 50:64-69. [53] Wang ZM, Lu ZM, Shi JS, et al.Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar[J]. Scientific Reports, 2016, 6:26818. [54] Zhang GQ, Xu Q, Bian C, et al.The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution[J]. Scientific Reports, 2016, 6:19029. |