[1] 高远, 杨帆, 秦景. 阿特拉津环境危害及污染防治对策[J]. 水利技术监督, 2014, 22(2):11-13. [2] 吴奇, 宋福强. 土壤中阿特拉津生物降解的研究进展[J]. 土壤与作物, 2017, 6(2):153-160. [3] Jablonowski ND, Andreas S, Burauel P.Still present after all these years:persistence plus potential toxicity raise questions about the use of atrazine[J]. Environmental Science and Pollution Research, 2011, 18(2):328-331. [4] Zhang Y, Meng DG, Wang ZG, et al.Oxidative stress response in atrazine-degrading bacteria exposed to atrazine.[J]. Journal of Hazardous Materials, 2012, 334(2):95-101. [5] Gorito AM, Ribeiro AR, Almeida CMR, et al.A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation[J]. Environmental Pollution, 2017, 227:428-443. [6] Tao Y, Hu SB, Han SY, et al.Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32.[J]. The Science of the Total Environment, 2019, 682:59-69. [7] Renee MZ, Zakariya A, Ashley S.Whitaker, et al. Atrazine exposure affects growth, body condition and liver health in Xenopus laevis tadpoles[J]. Aquatic Toxicology, 2011, 104(3):243-253. [8] 齐文启, 孙宗光, 汪志国, 等. 环境荷尔蒙研究的现状及其监测分析[J]. 现代科学仪器, 2000(4):32-38. [9] Helena P, Lucija ZK.Evaluation of photolysis and hydrolysis of atrazine and its first degradation products in the presence of humic acids[J]. Environmental Pollution, 2004, 133(3):517-529. [10] 蔺中, 张倩, 李文清, 等. 土壤阿特拉津的生物修复机制的研究[J]. 科技资讯, 2018, 16(11):116-117, 119. [11] Morillo E, Villaverde J.Advanced technologies for the remediation of pesticide-contaminated soils[J]. Science of the Total Environment, 2017, 586:576-597. [12] Zhong L, Zhen ZH, Lei R, et al.Effects of two ecological earthworm species on atrazine degradation performance and bacterial community structure in red soil[J]. Chemosphere, 2018, 196:467-475. [13] Mandelbaum RT, Allan DL, Wackett LP.Isolation and characteri-zation of a Pseudomonas sp. that mineralizes the s-Triazine herbicide atrazine[J]. Appl Environ Microbiol, 1995, 61(4):1451-1457. [14] Pooja B, Abhinav S, Sneha S, et al.Mapping atrazine and phenol degradation genes in Pseudomonas sp. EGD-AKN5[J]. Biochemical Engineering Journal, 2015, 102:125-134. [15] Ana FTF, Vânia SB, Anelize B, et al.Degradation of atrazine by Pseudomonas sp. and Achromobacter sp. isolated from Brazilian agricultural soil[J]. International Biodeterioration & Biodegradation, 2018, 130:17-22. [16] Ye J, Zhang J, Gao J, et al.Isolation and characterization of atrazine-degrading strain Shewanella sp. YJY4 from cornfield soil[J]. Letters in Applied Microbiology, 2016, 63(1):45-52. [17] Wang J, Zhu L, Wang Q, et al.Isolation and characterization of atrazine mineralizing bacillus subtilis strain HB-6[J]. PLoS One, 2014, 9(9):e107270. [18] Sagarkar S, Bhardwaj P, Storck V, et al.s-triazine degrading bacterial isolate Arthrobacter sp. AK-YN10, a candidate for bioaugmentation of atrazine contaminated soil[J]. Applied Microbiology and Biotechnology, 2016, 100(2):903-913. [19] Ojha S, Rana N, Mishra S.Fructo-oligosaccharide synthesis by whole cells of Microbacterium paraoxydans[J]. Tetrahedron:Asymmetry, 2016, 27(24):1245-1252. [20] 许尤厚, 周洪波. 产絮凝剂微杆菌的絮凝特性及印染废水处理应用[J]. 工业水处理, 2016(12):59-63. [21] 程仕伟, 李坦坦, 梁会会, 等. 响应面优化金橙黄微杆菌YT9的发酵条件生产纤维素酶[J]. 中国酿造, 2013, 32(4):48-51. [22] 徐天宇, 胡苏莹, 周峻岗, 等. 微杆菌Microbacterium sp. FY1538降解赤霉烯酮的活性研究[J]. 复旦学报:自然科学版, 2016, 55(2):223-231. [23] Corretto E, Antonielli L, Sessitsch A, et al.Draft genome sequences of 10 Microbacterium spp., with emphasis on heavy metalcontaminated environments[J]. Genome Announc, 2015, 3(3):e00432. [24] Bankevich A, Nurk S, Antipov D, et al.SPAdes:A new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5):455-477. [25] Hyatt D, Chen GL, Locascio PF, et al.Prodigal:prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11(1):119-129. [26] Chen N. Using repeat masker to identify repetitive elements in genomic sequences[J]. Current Protocols in Bioinformatics, 2004, Chapter 4:Unit 4. 10. [27] Lowe TM, Eddy SR. tRNAscan-SE:A program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Research, 1997, 25(5):955-964. [28] Nawrocki EP, Eddy SR.Infernal 1. 1:100-fold faster RNA homology searches[J]. Bioinformatics, 2013, 29(22):2933-2935. [29] Nawrocki EP, Burge SW, Bateman A, et al.Rfam 12. 0:updates to the RNA families database[J]. Nucleic Acids Research, 2015, 43(Database issue):D130-137. [30] Tatusov RL.The COG database:a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1):33-36. [31] Kanehisa M.The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32:D277-D280. [32] Boeckmann B.The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003[J]. Nucleic Acids Research, 2003, 31(1):365-370. [33] 邓泱泱, 荔建琦, 吴松锋, 等. nr数据库分析及其本地化[J]. 计算机工程, 2006(5):71-73, 76. [34] Altschul SF.Gapped BLAST and PSI-BLAST:a new generation of protein detabase search programs[J]. Nucleic Acids Res, 1997, 25(17):3389-3402. [35] Conesa A, Gotz S, Garcia-Gomez JM, et al.Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18):3674-3676. [36] Ashburner M, Ball CA, Blake JA, et al.Gene ontology:tool for the unification of biology. The Gene Ontology Consortium[J]. Nature Genetics, 2000, 25(1):25-29. [37] Finn RD, Coggill P, Eberhardt RY, et al.The Pfam protein families database:towards a more sustainable future.[J]. Nucleic Acids Research, 2016, 44(D1):D279-D285. [38] Saier MH, Tran CV, Barabote RD.TCDB:The transporter classification database for membrane transport protein analyses and information[J]. Nucleic Acids Research, 2006, 34(Database issue):D181-D186. [39] Rainer W, Thomas KB, Martin U, et al.PHI-base:a new database for pathogen host interactions[J]. Nucleic Acids Research, 2006, 34(Database issue):D459-D464. [40] Liu B, Pop M.ARDB--antibiotic resistance genes database[J]. Nucleic Acids Research, 2009, 37(Database):D443-D447. [41] Chen L.VFDB:A reference database for bacterial virulence factors[J]. Nucleic Acids Research, 2004, 33(Database issue):D325-D328. [42] Cantarel BL, Coutinho PM, Rancurel C, et al.The carbohydrate-active enZymes database(CAZy):an expert resource for Glyco-genomics[J]. Nucleic Acids Research, 2009, 37(Database):D233-D238. [43] Delcher AL.Fast algorithms for large-scale genome alignment and comparison[J]. Nucleic Acids Research, 2002, 30(11):2478-2483. [44] Vernikos GS, Parkhill J.Interpolated variable order motifs for identification of horizontally acquired DNA:Revisiting the Salmonella pathogenicity islands[J]. Bioinformatics, 2006, 22(18):2196-2203. [45] Nguyen M, Ekstrom A, Li XQ, et al.HGT-Finder:A new tool for horizontal gene transfer finding and application to Aspergillus genomes[J]. Toxins, 2015, 7(10):4035-4053. [46] Angiuoli SV, Salzberg SL.Mugsy:Fast multiple alignment of closely related whole genomes[J]. Bioinformatics, 2011, 27(3):334-342. [47] Li L.OrthoMCL:Identification of ortholog groups for eukaryotic genomes[J]. Genome Research, 2003, 13(9):2178-2189. [48] Guindon S, Dufayard JF, Lefort V, et al.New algorithms and methods to estimate maximum-Likelihood phylogenies:assessing the performance of PhyML 3. 0[J]. Systematic Biology, 2010, 59(3):307-321. [49] 史延华, 任磊, 贾阳, 等. 施氏假单胞菌YC-YH1的萘降解特性及产物分析[J]. 微生物学通报, 2015, 42(10):1866-1876. [50] 张丹, 李兆格, 包新光, 等. 细菌降解萘、菲的代谢途径及相关基因的研究进展[J]. 生物工程学报, 2010, 26(6):726-734. [51] Gao YP, Fang JG, Du MR, et al.Response of the eelgrass(Zostera marina L.)to the combined effects of high temperatures and the herbicide, atrazine[J]. Aquatic Botany, 2017, 142:41-47. |