生物技术通报 ›› 2019, Vol. 35 ›› Issue (7): 181-189.doi: 10.13560/j.cnki.biotech.bull.1985.2018-1103
赵昕鹏, 周云, 吕琳琳, 李锁平, 张大乐
收稿日期:
2018-12-29
出版日期:
2019-07-26
发布日期:
2019-07-29
作者简介:
赵昕鹏,男,博士研究生,研究方向:小麦遗传育种;E-mail:550599399@qq.com
基金资助:
ZHAO Xin-peng, ZHOU Yun, LÜ Lin-lin, LI Suo-ping, ZHANG Da-le
Received:
2018-12-29
Published:
2019-07-26
Online:
2019-07-29
摘要: 节节麦是普通小麦D基因组的供体种,具有丰富的遗传变异,在普通小麦遗传背景日渐狭窄的今天,节节麦为普通小麦育种提供了宝贵的遗传资源。系统总结了国内外对节节麦的研究进展,对节节麦的遗传多样性和在小麦育种中的利用等方面进行综述,以期为更好地利用节节麦种质资源提供参考。
赵昕鹏, 周云, 吕琳琳, 李锁平, 张大乐. 节节麦遗传多样性及在改良普通小麦中的应用[J]. 生物技术通报, 2019, 35(7): 181-189.
ZHAO Xin-peng, ZHOU Yun, LÜ Lin-lin, LI Suo-ping, ZHANG Da-le. Genetic Diversity of Aegilops tauschii Coss. and Its Utilization in Improving Common Wheat[J]. Biotechnology Bulletin, 2019, 35(7): 181-189.
[1] Olson EL, Rouse MN, Pumphrey MO, et al.Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat[J]. Theoretical & Applied Genetics, 2013, 126(10):2477-2484. [2] Laikova LI, Belan IA, Badaeva ED, et al.Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss.[J]. Genetika, 2013, 49(1):103-112. [3] 张颙, 杨武云, 谭禺. 高产、高抗条锈病小麦新品种川麦47[J]. 四川农业科技, 2008(11):20. [4] Zhang DL, He J, Huang Lǐ, et al.An advanced backcross population through synthetic octaploid wheat as a “Bridge”:Development and QTL detection for seed dormancy[J]. Front Plant Sci, 2017, 8:2123. [5] Eig A.Monographisch-kritische ubersicht der gattung Aegilops[J]. Repert Spec nov Regni Veg, 1929, 55:1-228. [6] Hammer K.Preliminary work on monographs of wild plant collections:Aegilops L.[J]. Kulturpflanze, 1980, 28:33-180. [7] Matsuoka Y, Nishioka E, Kawahara T, et al.Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss.[J]. Plant Systematics & Evolution, 2009, 279(1/4):233-244. [8] 张学勇, 杨欣明, 董玉琛. 醇溶蛋白电泳在小麦种质资源遗传分析中的应用[J]. 中国农业科学, 1995, 28(4):25-32. [9] Dudnikov AJ.Allozyme variation in Transcaucasian populations of Aegilops squarrosa[J]. Heredity, 1998, 80(80):248-258. [10] 王亚娟, 王耀勇, 张德华, 等. 节节麦农艺性状及高分子量谷蛋白亚基遗传多样性研究[J]. 西北植物学报, 2007, 27(10):1967-1972. [11] 苏亚蕊, 张大乐, 张明, 等. 黄河中游粗山羊草三种y-型高分子量谷蛋白亚基的鉴定、克隆及系统进化分析[J]. 作物学报, 2009, 35(7):1244-1252. [12] Lubbers EL, Gill KS, Cox TS, et al.Variation of molecular markers among geographically diverse accessions[J]. Genome, 1991, 34(3):354-361. [13] 孔令让, 董玉琛. 粗山羊草随机扩增多态性DNA研究[J]. 植物学报:英文版, 1998(3):223-227. [14] 李玉阁, 苏亚中, 张大乐, 等. 中国节节麦基于ISSR标记的遗传多样性分析[J]. 麦类作物学报, 2017, 37(1):30-39. [15] Pestsova E, Korzun V, Goncharov NP, et al.Microsatellite analysis of Aegilops tauschii germplasm[J]. Theoretical & Applied Genetics, 2000, 101(1/2):100-106. [16] 苏亚蕊, 张大乐, 徐守明, 等. 粗山羊草居群间遗传分化及多样性的SSR分析[J]. 生态学报, 2010, 30(4):969-975. [17] Matsuoka Y, Mori N, Kawahara T.Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss.[J]. Theoretical & Applied Genetics, 2005, 111(2):265-271. [18] Mizuno N, Yamasaki M, Matsuoka Y, et al.Population structure of wild wheat D-genome progenitor Aegilops tauschii Coss. :implications for intraspecific lineage diversification and evolution of common wheat[J]. Molecular Ecology, 2010, 19(5):999-1013. [19] Matsuoka Y, Takumi S, Kawahara T.Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae)[J]. BMC Evolutionary Biology, 2015, 15(1):1-10. [20] Wang J, Luo MC, Chen Z, et al.Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat[J]. New Phytologist, 2013, 198(3):925-937. [21] Kihara H, Yamashita K, Tanaka M.Morphological, physiological, genetical and cytological studies in aegilops and triticum collected from Pakistan, Afghanistan and Iran[M]. Kyoto:Committee of the Kyoto University Scientific Expedition to the Karakoram and Hindukush, Kyoto University, 1965:26-27. [22] Jaaska V.Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny[J]. Theoretical & Applied Genetics, 1980, 56(6):273-284. [23] 孔令让, 董玉琛. 粗山羊草(Aegilops tauschii)遗传多样性的研究进展[J]. 山东农业大学学报:自然科学版, 1999, 30(4):464-470. [24] 颜济, 杨俊良, 崔乃然, 等. 新疆伊犁地区的节节麦(Aegilops tauschii Cosson)[J]. 作物学报, 1984(1):1-8. [25] 钟骏平, 崔乃然, 林培钧. 新疆伊犁节节麦(Aegilops tauschii Cosson)的发现和分布[J]. 新疆农业大学学报, 1984(1):35-39. [26] 杨武云. 中国节节麦的细胞遗传学研究及有关问题探讨[J]. 西南科技大学学报:哲学社会科学版, 1992(1):16-21. [27] 魏会廷, 李俊, 彭正松, 等. 节节麦DNA指纹关系所揭示的古代中国与西方农业技术交流[J]. 自然科学进展, 2008, 18(9):987-993. [28] 张大乐, 苏亚蕊, 李玉阁, 等. 节节麦居群间的籽粒性状变异及相关性分析[J]. 麦类作物学报, 2012, 32(2):223-228. [29] 郝晨阳, 王兰芬, 张学勇, 等. 我国育成小麦品种的遗传多样性演变[J]. 中国科学, 2005, 35(5):408-415. [30] 许树军, 董玉琛, 陈尚安, 等. 小麦与山羊草双二倍体抗病性的研究与利用[J]. 作物学报, 1990, 16(2):106-111. [31] Dyck PL, Kerber ER.Inheritance in hexaploid Wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa[J]. Canadian Journal of Genetics & Cytology, 1970, 12(1):175-180. [32] Kema GHJ, Lange W.Race-specific suppression of resistance to yellow rust in synthetic hexaploids of wheat[J]. Vortraege Fuer Pflanzenzuechtung, 1992, 24:206. [33] Asins MJ, Carbonell EA.Distribution of genetic variability in a durum wheat world collection[J]. Theoretical & Applied Genetics, 1989, 77(2):287-294. [34] Kerber ER.Suppression of rust resistance in amphiploids of Triticum:International Wheat Genetics Symposium, 1983[C]. Kyoto:International Wheat Genetics Symposium, 1983:813-817. [35] Martin A.Cytology and morphology of the hybrid Hordeum chilense × Aegilops squarrosa[J]. Journal of Heredity, 1983, 74(6):487. [36] 任强, 刘慧娟, 陈洋, 等. 人工合成小麦CI191抗条锈病基因的鉴定及分子标记定位[J]. 作物学报, 2010, 36(5):721-727. [37] 何名召, 王丽敏, 张增艳, 等. 硬粒小麦-粗山羊草人工合成小麦CI108抗条锈病新基因的鉴定、基因推导与分子标记定位[J]. 作物学报, 2007, 33(7):1045-1050. [38] Periyannan S, Bansal U, Bariana H, et al.Identification of a robust molecular marker for the detection of the stem rust resistance gene Sr45 in common wheat[J]. Theoretical & Applied Genetics, 2014, 127(4):947-955. [39] Wang T, Xu SS, Harris MO, et al.Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat[J]. Theoretical Applied Genetics, 2006, 113(4):611-618. [40] 张颙, 杨武云, 彭云良, 等. 小麦新品种川麦42抗条锈病性遗传分析[J]. 植物保护学报, 2006, 33(3):287-290. [41] 兰秀锦, 郑有良, 刘登才, 等. 节节麦抗穗发芽基因的染色体定位及其抗性机理[J]. 中国农业科学, 2002, 35(1):12-15. [42] 廖祥政. 发掘人工合成小麦中增加千粒重的QTL[D]. 雅安:四川农业大学, 2008. [43] 李文才, 李涛, 赵逢涛, 等. 小麦D基因组产量性状QTL定位[J]. 华北农学报, 2005, 20(1):27-30. [44] Pestsova EG, Andreas BR, R Der MS. Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines[J]. Theoretical & Applied Genetics, 2006, 112(4):634-647. [45] Edae EA, Byrne PF, Haley SD, et al.Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes[J]. Theoretical & Applied Genetics, 2014, 127(4):791-807. [46] Wan H, Yang Y, Li J, et al.Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat[J]. Euphytica, 2015, 205(1):275-285. [47] Gill BS, Wilson DL, Raupp WJ, et al.Registration of KS89WGRC3 and KS89WGRC6 Hessian fly-resistant hard red winter wheat germplasm[J]. Crop Science, 1991, 31(1):245. [48] Cox TS, Sears RG, Gill BS, et al.Registration of KS91WGRC11, KS92WGRC15, KS92WGRC23 leaf rust-resistant hard red winter wheat germplasms[J]. Crop Science, 1994, 34(2):595. [49] Eastwood RF, Lagudah ES, Appels R.A directed search for DNA sequences tightly linked to cereal cyst nematode resistance genes in Triticum tauschii[J]. Genome, 1994, 37(2):311-319. [50] Marais GF, Wessels WG, Horn M, et al.Association of a stem rust resistance gene(Sr45)and two Russian wheat aphid resistance genes(Dn5 and Dn7)with mapped structural loci in common wheat[J]. South African Journal of Plant & Soil, 1998, 15(2):67-71. [51] Cox TS, Bockus WW, Gill BS, et al.Registration of KS96WGRC40 hard red winter wheat germplasm resistant to wheat curl mite, stagnospora leaf blotch, and septoria leaf blotch[J]. Crop Science, 1999, 39(2):597. [52] Xu SS, Cai X, Wang T, et al.Registration of two synthetic hexaploid wheat germplasms resistant to Hessian fly[J]. Crop Science, 2006, 46(3):1401-1402. [53] Olson EL, Rouse MN, Pumphrey MO, et al.Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK(Ug99)from Aegilops tauschii to wheat[J]. Theoretical & Applied Genetics, 2013, 126(5):1179-1188. [54] Wiersma AT, Pulman JA, Brown LK, et al.Identification of Pm58 from Aegilops tauschii[J]. Theoretical & Applied Genetics, 2017, 130(1):1-11. [55] Nishijima R, Okamoto Y, Hatano H, et al.Quantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii:Implications for intraspecific diversification and subspecies differentiation[J]. PLoS One, 2017, 12(3):e173210. [56] Zhang DL, Zhou Y, Zhao XP, et al.Development and utilization of introgression lines using synthetic octaploid wheat(Aegilops tauschii × Hexaploid wheat)as donor[J]. Front Plant Sci, 2018, 9:1113. [57] Yan L, Liang F, Xu H, et al.Identification of QTL for grain size and shape on the D genome of natural and synthetic allohexaploid wheats with near-identical AABB genomes[J]. Front Plant Sci, 2017, 8:1705. [58] Li Y, Zhou R, Wang J, et al.Novel and favorable QTL allele clusters for end-use quality revealed by introgression lines derived from synthetic wheat[J]. Molecular Breeding, 2012, 29(3):627-643. [59] Jian Y, Liu Y, Pu Z, et al.Molecular characterization of high pI α-amylase and its expression QTL analysis in synthetic wheat RILs[J]. Molecular Breeding, 2014, 34(3):1075-1085. [60] Watanabe N, Fujii Y, Takesada N, et al.Cytological and microsatellite mapping of the gene for brittle rachis in a Triticum aestivum-Aegilops tauschii introgression line[J]. Euphytica, 2006, 151(1):63-69. [61] Cox TS, Hatchett JH, Gill BS, et al.Agronomic performance of hexaploid wheat lines derived from direct crosses between wheat and Aegilops squarrosa[J]. Plant Breeding, 2010, 105(4):271-277. [62] Fritz AK, Cox TS, Gill BS, et al.Molecular marker-facilitated analysis of introgression in winter wheat × Triticum tauschii populations[J]. Crop Science, 1995, 35(6):1691-1695. [63] Gill BS, Raupp WJ.Direct genetic transfers from Aegilops squarrosa L. to Hexaploid wheat[J]. Crop Science, 1987, 27(3):445-450. [64] Olson EL, Rouse MN, Pumphrey MO, et al.Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat[J]. Theoretical & Applied Genetics, 2013, 126(10):2477-2484. [65] Jia J, Zhao S, Kong X, et al.Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation[J]. Nature, 2013, 496(7443):91-95. [66] Luo MC, Gu YQ, You FM, et al.A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor[J]. Proc Natl Acad Sci USA, 2013, 110(19):7940-7945. [67] Zhao G, Zou C, Li K, et al.The Aegilops tauschii genome reveals multiple impacts of transposons[J]. Nature Plants, 2017, 3:946-955. [68] Luo MC, Gu YQ, Puiu D, et al.Genome sequence of the progenitor of the wheat D genome Aegilops tauschii[J]. Nature, 2017, 551(7681):498. |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[3] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[4] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[5] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[6] | 杜冬冬, 钱晶, 李思琪, 刘雯菲, 魏向利, 刘长勇, 罗瑞峰, 康立超. 单核细胞增生李斯特菌LMXJ15全基因组测序及分析[J]. 生物技术通报, 2023, 39(7): 298-306. |
[7] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[8] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[9] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[10] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[11] | 周晓杰, 杨思琪, 张译文, 徐佳琪, 杨晟. CRISPR相关转座酶及其细菌基因组编辑应用[J]. 生物技术通报, 2023, 39(4): 49-58. |
[12] | 肖小军, 陈明, 韩德鹏, 余跑兰, 郑伟, 肖国滨, 周庆红, 周会汶. 甘蓝型油菜每角果粒数全基因组关联分析[J]. 生物技术通报, 2023, 39(3): 143-151. |
[13] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[14] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[15] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||