生物技术通报 ›› 2019, Vol. 35 ›› Issue (7): 172-180.doi: 10.13560/j.cnki.biotech.bull.1985.2018-1022
高梦迪1,2, 盛茂银1,2,3, 傅籍锋1,2
收稿日期:
2018-11-26
出版日期:
2019-07-26
发布日期:
2019-07-29
作者简介:
高梦迪,女,硕士研究生,研究方向:纳米材料对植物生长发育的影响及在植物研究中的应用;E-mail:909532199@qq.com
基金资助:
GAO Meng-di1,2, SHENG Mao-yin1,2,3, FU Ji-feng1,2
Received:
2018-11-26
Published:
2019-07-26
Online:
2019-07-29
摘要: 纳米技术(Nanotechnology)自20世纪80年代末诞生以来,便受到广泛关注。它呈现出许多大尺寸材料不具备的特殊性质,且随着多种新型纳米材料的出现,以及在土壤改良和促进植物生长发育中的优异表现,在林业、农业等领域展现出巨大的应用前景。为了更加充分地利用纳米材料,探索其调节植物生长发育的规律、作用机制及存在的风险,对纳米材料在植物生长发育上的应用现状进行了综述,并对未来的研究方向进行展望。
高梦迪, 盛茂银, 傅籍锋. 纳米材料对植物生长发育的影响[J]. 生物技术通报, 2019, 35(7): 172-180.
GAO Meng-di, SHENG Mao-yin, FU Ji-feng. Effects of Nanomaterials on Plant Growth and Development[J]. Biotechnology Bulletin, 2019, 35(7): 172-180.
[1] Gruère G, Narrod C, Abbott L.Agricultural, food, and water nanotechnologies for the poor:opportunities, constraints, and role of the consultative group on international agricultural research[J]. International Food Policy Research Institute Discuss Pap, 2011, 3(13):3271-3278. [2] 张夫道, 赵秉强, 张骏, 等. 纳米肥料研究进展与前景[J]. 植物营养与肥料学报, 2002(2):254-255. [3] Ruffini CM, Giorgetti L, Geri C, et al.The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L.[J]. Nanopart Res, 2011, 1(6):2443-2449. [4] Klaine SJ, Alvarz PJ, Batley GE, et al.Nanomaterials in the environment:behavior, fate, bioavailability and effects[J]. Environ Toxicol Chem, 2008, 27(9):1825-1851. [5] Derosa MC, Monreal C, Schnitzer M.et al.Nanotechnology in fertilizers[J]. Nature Nanotechnology, 2010, 5(2):91. [6] 吕继涛, 张淑贞. 人工纳米材料与植物的相互作用:植物毒性、吸收和传输[J]. 化学进展, 2013, 25(1):156-163. [7] 江红生. 纳米银对水生植物的毒性机制及其生态效应[D]. 北京:中国科学院, 2017. [8] Tripathi DK, Gaur S, Singh S, et al.An overview on manufactured nanoparticles in plants:Uptake, translocation, accumulation and phytotoxicity[J]. Plant Physiology & Biochemistry, 2017, 110:2-12. [9] Naderi M, Danesh-Shahraki A.Nanofertilizers and their roles in sustainable agriculture[J]. International Journal of Agricultural and Statistics Sciences, 2013, 5:2229-2232. [10] Gupta VK, Saleh TA.Sorption of pollutants by porous carbon, carbon nanotubes and fullerene:An overview[J]. Environmental Science and Pollution Research International, 2013, 20:2828-2843. [11] Gogos A, Knauer K, Bucheli TD.Nanomaterials in plant protection and fertilization:Current state, foreseen applications, and research priorities[J]. Agri Food Chem, 2012, 60:9781-9792. [12] Daneshvar N, Salari D, Niaei A, et al.Photocatalytic degradation of the herbicide erioglaucine in the presence of nanosized titanium dioxide:comparison and modeling of reaction kinetics[J]. Journal of Environmental Science & Health Part B, 2006, 41(8):1273-1290. [13] Ma CX, White JC, Dhankher OP, et al.Metal-based nanotoxicity and detoxification pathways in higher plants[J]. Environ Sci Technol, 2015, 49(12):7109-7122. [14] Miralles P, Church TL, Harris AT.Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environ Sci Technol, 2012, 46(17):9224-9239. [15] Da Costa MVJ, Sharma PK.Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa[J]. Photosynthetica, 2016, 54(1):110-119. [16] 牟宇. CuO纳米颗粒对三种拟南芥毒性效应的比较研究[D]. 青岛:中国海洋大学, 2012. [17] 李艳娟, 庄正, 刘青青, 等. 纳米TiO2对杉木种子萌发和幼苗生长及生理的影响[J]. 生态学杂志, 2017, 36(5):1259-1264. [18] Hagighi M, Silva JATD.The effect of N-TiO2 on tomato, onion, and radish seed germination[J]. Journal of Crop Science and Biotechnology, 2014, 17:221-227. [19] Singh P, Singh R, Borthakur A, et al.Effect of nanoscale TiO2 activated carbon composite on Solanum lycopersicum(L.)and Vigna radiata(L.)seeds germination[J]. Energy, Ecology and Environment, 2016, 1:131-140. [20] López-Moreno ML, Avilés LL, Pérez NG, et al.Effect of cobalt ferrite(CoFe2O4)nanoparticles on the growth and development of Lycopersicon lycopersicum(tomato plants)[J]. Sci Total Environ, 2016, 550:45-52. [21] Nair PMG, Chung IM.Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard(Brassica juncea L.)[J]. Ecotox Environ Safe, 2015, 113:302-313. [22] 向垒, 莫测辉, 卢锡洪, 等. 纳米氧化铜对白菜种子发芽的毒害作用研究[J]. 农业环境科学学报, 2011, 30(9):1830-1835. [23] Lin DH, Xing BS.Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environmental Science and Technology, 2008, 42(15):5580-5585. [24] Yoon SJ, Kwak JI, Lee WM, et al.Zinc oxide nanoparticles delay soybean development:A standard soil microcosm study[J]. Ecotox Environ Safe, 2014, 100:131-137. [25] Du W, Tan W, Peralta-Videa JR, et al.Interaction of metal oxide nanoparticles with higher terrestrial plants:Physiological and biochemical aspects[J]. Plant Physiol Biochem, doi.org/10.1016/j.plaphy.2016.04.024. [26] Rico CM, Peralta-Videa JR, Gardea-Torresdey JL.Chemistry, biochemistry of nanoparticles, and their role in antioxidant defense system in plants// Nanotechnology and Plant Sciences[M]. Springer International Press, 2015:1-17. [27] Rico CM, Hong J, Morales MI, et al.Effect of cerium oxide nanoparticles on rice:a study involving the antioxidant defense system and in vivo fluorescence imaging[J]. Environ Sci Technol, 2013, 47:5635-5642. [28] Lin BS, Diao SQ, Li CH, et al.Effect of TMS(nanostructured silicon dioxide)on growth of Changbai larch seedlings[J]. Journal of Forestry Research, 2004, 15(2):138-140. [29] 邹丽莎. 纳米氧化锌的玉米吸收积累与毒性效应初探[D]. 杭州:浙江大学, 2014. [30] 孙斯蔚. 纳米氧化锌暴露下的土壤微生物生态自恢复研究[D]. 西安:陕西科技大学, 2018. [31] Cao Z, Stowers C, Rossi L, et al.Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of Soybean(Glycine max L.)[J]. Environmental Science:Nano, 2017, 4:1086-1094. [32] Siddiqui MH, Al-Whaibi MH, Faisal M, et al.Nano-silicon ioxide mitigates the adverse effects of salt stress on Cucurbita epo L.[J]. Environ Toxicol Chem, 2014, 33:2429-2437. [33] Da Costa MVJ, Sharma PK.Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa[J]. Photosynthetica, 2016, 54(1):110-119. [34] Nair PMG, Chung IM.A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean(Glycine max L.)root development and lignification of root cells[J]. Biol Trace Elem Res, 2014, 162:342-352. [35] Venkatachalam P, Priyanka N, Manikandan K, et al.Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton(Gossypium hirsutum L.)[J]. Plant Physiology et Biochemistry, 2016, 9:004. [36] Raliya R, Nair R, Chavalmane S, et al.Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato(Solanum lycopersicum L.)plant[J]. Metallomics, 2015, 7:1584-1594. [37] Servin D, Morales MI, Castillo-Michel H, et al.Synchrotron verification of TiO2 nanoparticle transfer from soil into the food chain[J]. Environ Sci Technol, 2013, 47:11592-11598. [38] Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA, et al.Cerium biomagnification in a terrestrial food chain:Influence of particle size and growth stage[J]. Environ Sci Technol, 2016, 50(13):6782-6792. [39] 刘安勋, 廖宗文. 纳米材料对水团簇的影响[J]. 安徽农业科学, 2008, 36(36):15780-15781. [40] Servin AD, Castillo-michel H, Hernandez-viezcas JA, et al. Synchrotron micro-XRF and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber(Cucumis sativus)plants[J]. Environmental Science & Technology, 2012, 46(14):7637-7643. [41] Wang Q, Ebbs SD, Chen YS, et al.Trans-generational impact of cerium oxide nanoparticles on tomato plants[J]. Metallomics, 2013, 5(6):753-759. [42] 王世华. 叶面喷施纳米硅增强水稻(Oryza sativa L.)抗重金属毒害机理研究[D]. 南京:南京农业大学, 2007. [43] Van NL, Ma CX, Shang JY, et al.Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton[J]. Chemosphere, 2016, 144:661-670. [44] Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, et al. Comparative phytotoxicity of ZnO NPs, bulk ZnO,ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil[J]. Sci Total Environ, 2015:515-516, 60-69. [45] Rico CM, Barrios AC, Tan W, et al.Physiological and biochemical response of soil-grown barley(Hordeum vulgare L.)to cerium oxide nanoparticles[J]. Environmental Science and Pollution Research, 2015, 22(14):10551-10558. [46] Zhao L, Sun Y, Hernandez-Viezcas JA, et al.Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn(Zea mays)plants and in situ μ-XRF mapping of nutrients in kernels[J]. Environmental Science & Technology, 2015, 49(5):2921-2928. [47] Jeyasubramanian K, Thoppey UUG, Hikku GS, et al.Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles[J]. RSC Advances, 2016, 6:15451-15459. [48] Kroto HW, Heath JR, O’Brien SC, et al. C60:Buckminsterfull-erene[J]. Nature, 1985, 318:162-163. [49] Iijima S.Hellical microtubules of graphitic carbon[J]. Nature, 1991, 354:6. [50] Novoselov KS, Geim AK, Morozov AV, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306:666-669. [51] Mukherjee A, Majumdar S, Servin AD, et al.Carbon nanomaterials in agriculture:a critical review[J]. Front Plant Sci, 2016, 7:172. [52] 冯璐, 王玉国, 温银元, 等. 纳米碳对离体培养条件下几种植物生长及分化的影响[J]. 生物技术通报, 2017, 33(4):164-168. [53] Kole C, Kole P, Randunu KM, et al.Nanobiotechnology can boost crop production and quality:first evidence from increased plantbiomass, fruit yield and phytomedicine content in bitter melon(Momordica charantia)[J]. BMC Biotechnology, 2013, 13:37. [54] Torre-Roche DL, Hawthorne RJ, Deng YQ, et al.Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants[J]. Environmental Science & Technology, 2013, 47(21):12539-12547. [55] De La Torre-Roche R, Hawthorne J, Deng Y, et al. Carbon Nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants[J]. Environmental Science & Technology, 2013, 47(21):12539-12547. [56] Ma X, Wang C.Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems[J]. Environmental Engineering Science, 2010, 27(11):989-992. [57] Torre-Roche DL, Hawthorne RJ, Deng YQ, et al.Fullerene-enhanced accumulation of p, p'-DDE in agricultural crop species[J]. Environmental Science & Technology, 2012, 46(17):9315-9323. [58] 罗春燕, 徐文冰, 陈红春, 等. 胶体富勒烯与菲对水稻发芽及幼苗生长的影响[J]. 环境化学, 2016, 35(5):1076-1083. [59] Liu Q, Zhang X, Zhao Y, et al.Fullerene-induced increase of glycosyl residue on living plant cell wall[J]. Environmental Science & Technology, 2013, 47(13):7490-7498. [60] Zuverza-Mena N, Martínez-Fernández D, Du W, et al.Exposure of engineered nanomaterials to plants:Insights into the physiological and biochemical responses-A review[J]. Plant Physiol Biochem, 2017, 110:236-264. [61] Wang X, Han H, Liu X, et al.Multi-walled carbon nanotubes can enhance root elongation of wheat(Triticum aestivum)plants[J]. Journal of Nanoparticle Research, 2012, 14(6):1-10. [62] Tiwari DK, Dasgupta-schubert N, Cendejas LMV, et al, Interfacing carbon nanotubes(CNT)with plants:Enhancement of growth, water and ionic nutrient uptakein maize(Zea mays)and implications for nanoagricul-ture[J]. Applied Nanoscience, 2014, 4(5):577-591. [63] Khodakovskaya MV, Kim BS, Kim JN, et al.Carbon nanotubes as plant growth regulators:Effects on tomato growth, reproductive system, and soil microbial community[J]. Small, 2012, 9(1):115-123. [64] Shen CX, Zhang QF, Li J, et al.Induction of programmed cell death in Arabidopsis and rice by single-wall carbon nanotubes[J]. American Journal of Botany, 2010, 97(10):1602-1609. [65] Cañas JE, Long M, Nations S, et al.Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species[J]. Environmental Toxicology and Chemistry, 2008, 27(9):1922. [66] 胡俊杰, 劳志朗, 吴康铭, 等. 氧化石墨烯的环境行为和毒性效应研究进展[J]. 生态环境学报, 2017, 26(12):2169-2176. [67] 谈诗. 氧化石墨烯对大花蕙兰组织培养的效应及防褐变机理研究[D]. 长沙:湖南农业大学, 2014. [68] 吴金海, 焦靖芝, 谢伶俐, 等. 氧化石墨烯处理对甘蓝型油菜生长发育的影响[J]. 基因组学与应用生物学, 2015, 34(12):2738-2742. [69] Begum P, Ikhtiari R, Fugetsu B.Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce[J]. Carbon, 2011, 49(12):3907-3919. [70] Li F, Chao S, Li X, et al.The effect of graphene oxide on adventitious root formation and growth in apple[J]. Plant Physiol Biochem, 2018, 129:122-129. [71] 王震宇, 赵建, 李娜, 等. 人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010, 31(6):1409-1418. [72] Liu QL, Chen. B, Wang QL, et al. Carbon nanotubes as molecular transporters for walled plant cells[J]. Nano Letters, 2009, 9(3):1007-1010. [73] Aken VB.Gene expression changes in plants and microorganisms exposed to nanoparticles[J]. Curr Opin Biotech, 2015, 33:206-219. [74] Khodakovskaya M, Dervishi E, et al.Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth[J]. ACS Nano, 2009, 3(10):3221-3227. [75] Stampoulis D, Sinha SK, White JC.Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environ Sci Technol, 2009, 43:9473-9479. [76] Dietz KJ, Herth S.Plant nanotoxicology[J]. Trends Plant Sci, 2011, 16(11):582-589. [77] Ghosh M, Bandyopadhyay M, Mukherjee A.Genotoxicity of titanium dioxide(TiO2)nanoparticles at two trophic levels:Plant and human lymphocytes[J]. Chemosphere, 2010, 81(10):1253-1268. [78] Majumdar S, Peralta-Videa JR, Bandyopadhyay S, et al.Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms[J]. Journal of Hazardous Materials, 2014, 278:279-287. |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[6] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[7] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[8] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[9] | 李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79. |
[10] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[11] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[12] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[13] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[14] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[15] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||