[1] Joshi S, Goyal S, Reddy MS.Corn steep liquor as a nutritional source for biocementation and its impact on concrete structural properties[J]. J Ind Microbiol Biotechnol, 2018, 45(8):657-667. [2] 李硕, 肖杨, 王宇航. 一种采用胶结微生物水泥的高强钢管约束柱:中国, CN201611047610. 2[P].2017-05-31. [3] Lee YS, Park W.Current challenges and future directions for bacterial self-healing concrete[J]. Appl Microbiol Biotechnol, 2018, 102(7):3059-3070. [4] 周文广, 温志友, 徐品品, 等. 一种基于低价钙离子制备生物水泥的生产方法和应用:中国, CN201710489125. 9[P].2017-09-19. [5] Achal V, Kawasaki S.Biogrout:A novel binding material for soil improvement and concrete repair[J]. Front Microbiol, 2016, 7:314. [6] Graddy CMR, Gomez MG, Kline LM, et al.Diversity of sporosarcina-like bacterial strains obtained from meter-scale augmented and stimulated biocementation experiments[J]. Environ Sci Technol, 2018, 52(7):3997-4005. [7] Keykha HA, Asadi A, Zareian M.Environmental factors affecting the compressive strength of microbiologically induced calcite precipitation-treated soil[J]. Geomicrobiol J, 2017, 34(10):889-894. [8] Chen X, Yuan J, Alazhari M. Effect of microbiological growth components for bacteria-based self-healing on the properties of cement mortar[J]. Materials(Basel), 2019, 12(8), pii:E1303. [9] 梁仕华, 牛九格, 房采杏, 等. 营养液钙源对微生物固化砂土效果影响的试验研究[J]. 防灾减灾工程学报, 2018(5):781-786. [10] Ivanov V, Stabnikov V, Stabnikova O, et al.Environmental safety and biosafety in construction biotechnology[J]. World J Microbiol Biotechnol, 2019, 35(2):26. [11] Stabnikov V, Ivanov V, Chu J.Construction biotechnology:a new area of biotechnological research and applications[J]. World J Microbiol Biotechnol, 2015, 31(9):1303-1314. [12] 王君. 生物结皮在黄土高原地区高速公路边坡恢复中的应用[J]. 公路交通科技:应用技术版, 2018(9):31-33. [13] Ramezanian S, Ta HX, Muhunthan B, et al.Role of ionic strength in the retention and initial attachment of Pseudomonas putida to quartz sand[J]. Biointerphases, 2018, 13(4):041005. [14] Hua G, Shao C, Cheng Y, et al.Parameter-efficient bioclogging model:calibration and comparison with laboratory data[J]. Environ Sci Pollut Res Int, 2019, 26(4):3731-3740. [15] Hatayama K, Saito K.Calcite formation induced by Ensifer adhaerens, Microbacterium testaceum, Paeniglutamicibacter kerguelensis, Pseudomonas protegens and Rheinheimera texasensis[J]. Anto Van Leeuwen, 2019, 112(5):711-721. [16] Ivanov V, Chu J, Stabnikov V, et al.Strengthening of soft marine clay using bioencapsulation[J]. Mar Georesou Geotech, 2015, 33(4):320-324. [17] 郝大程, 周建强, 韩君. 土壤重金属和有机污染物的微生物修复:生物强化和生物刺激[J]. 生物技术通报, 2017, 33(10):9-17. [18] 荣辉, 张磊, 王雪平, 等. 一种微生物水泥矿化固结垃圾焚烧飞灰重金属方法:中国, CN201510260547. X[P].2017-02-01. [19] Stabnikov V, Chu J, Myo AN, et al.Immobilization of sand dust and associated pollutants using bioaggregation[J]. Water Air Soil Pollu, 2013, 224:1631-1636. [20] Røyne A, Phua YJ, Balzer Le S, et al.Towards a low CO2 emission building material employing bacterial metabolism(1/2):The bacterial system and prototype production[J]. PLoS One, 2019, 14(4):e0212990. [21] Bang S, Min SH, Bang SS.Application of microbiologically induced soil stabilization technique for dust suppression[J]. Int J Geo-Engi, 2011, 3(2):27-37. [22] Ivanov V, Stabnikov V.Construction biotechnology:Biogeochemistry, microbiology and biotechnology of construction materials and processes[M]. Springer, 2016. [23] Ivanov V.Environmental microbiology for engineers[M]. 2nd Edition. CRC Press, 2015. [24] Lan SB, Wu L, Zhang D, et al.Analysis of environmental factors determining development and succession in biological soil crusts[J]. Sci Total Environ, 2015, 538:492-499. [25] Park CH, Li XR, Zhao Y, et al.Rapid development of cyanobacterial crust in the field for combating desertification[J]. PLoS One, 2017, 12(6):e0179903. [26] Chaurasia L, Bisht V, Singh LP, et al.A novel approach of biomineralization for improving micro and macro-properties of concrete[J]. Construct Build Mat, 2019, 195:340-351. [27] 谈叶飞, 郭张军, 陈鸿杰, 等. 微生物追踪固结技术在堤防防渗中的应用[J]. 河海大学学报:自然科学版, 2018(6):521-526. [28] Mwandira W, Nakashima K, Kawasaki S, et al.Solidification of sand by Pb(II)-tolerant bacteria for capping mine waste to control metallic dust:Case of the abandoned Kabwe Mine, Zambia[J]. Chemosphere, 2019, 228:17-25. [29] Scheid D, Stubner S, Conrad R.Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition[J]. FEMS Microbiol Ecol, 2004, 50(2):101-110. [30] Sheng Y, Bibby K, Grettenberger C, et al.Geochemical and temporal influences on the enrichment of acidophilic iron-oxidizing bacterial communities[J]. Appl Environ Microbiol, 2016, 82(12):3611-3621. [31] Adamidis O, Madabhushi GS.Post-liquefaction reconsolidation of sand[J]. Proc Math Phys Eng Sci, 2016, 472(2186):20150745. [32] He J, Chu J, Liu HL, et al.Microbial soil desaturation for the mitigation of earthquake liquefaction[C]. The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, 2016. [33] Wu SF.Mitigation of liquefaction hazards using the combined biodesaturation and bioclogging method[D]. Ames, Iowa:Iowa State University, 2015. [34] Canakci H, Sidik W, Kılıç İH.Bacterail calcium carbonate precipitation in peat[J]. Arab J Sci Engi, 2015, 40(8):2251-2260. [35] Zhu X, Li W, Zhan L, et al.The large-scale process of microbial carbonate precipitation for nickel remediation from an industrial soil[J]. Environ Pollut, 2016, 219:149-155. [36] Seifan M, Berenjian A.Microbially induced calcium carbonate precipitation:a widespread phenomenon in the biological world[J]. Appl Microbiol Biotechnol, 2019, 103(12):4693-4708. [37] Achal V, Pan X, Zhang D.Bioremediation of strontium(Sr)contaminated aquifer quartz sand based on carbonate precipitation induced by Sr resistant Halomonas sp.[J]. Chemosphere, 2012, 89(6):764-768. [38] Zhao Y, Yao J, Yuan Z, et al.Bioremediation of Cd by strain GZ-22 isolated from mine soil based on biosorption and microbially induced carbonate precipitation[J]. Environ Sci Pollut Res Int, 2017, 24(1):372-380. [39] Achal V, Pan X, Lee DJ, et al.Remediation of Cr(VI)from chromium slag by biocementation[J]. Chemosphere, 2013, 93(7):1352-1358. [40] O’Brien PL, DeSutter TM, Casey FXM, et al. Thermal remediation alters soil properties - a review[J]. J Environ Manage, 2018, 206:826-835. |