生物技术通报 ›› 2020, Vol. 36 ›› Issue (2): 178-187.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0523
杨树萍, 张琳, 徐继林
收稿日期:
2019-06-14
出版日期:
2020-02-26
发布日期:
2020-02-23
作者简介:
杨树萍,女,硕士研究生,研究方向:应用微藻生物学;E-mail:1064432818@qq.com
基金资助:
YANG Shu-ping, ZHANG Lin, XU Ji-lin
Received:
2019-06-14
Published:
2020-02-26
Online:
2020-02-23
摘要: 藻类富含多种营养元素和活性物质,具有重要的经济价值和广阔的应用前景。现阶段藻类培养多采用露天跑道池,成本低,但易受环境影响。不适宜的环境条件(温度、酸性、重金属、紫外、盐度和光强胁迫等)会造成藻类生产成本上升、产品产量及品质下降等后果,严重制约藻类养殖业及相关产业的发展。添加剂不仅能有效促进藻类生长,还能缓解环境胁迫对其带来的逆境伤害。将近年来添加剂在藻类生长及抗逆方面的应用进行系统汇总,并对已阐明的几种添加剂的作用机理进行分析整理。添加剂在藻类中的应用研究大多停留在生长及生理指标的测定,如藻细胞密度、光系统活性、渗透调节物质含量、脂质含量、过氧化氢酶和硝酸还原酶活力等,仅有少部分研究是利用分子技术测定防御基因的表达情况,尝试进一步探究藻类抗逆性分子机制。旨在为研究者进一步明确常用添加剂在藻类中的信号传导机制及改善非生物胁迫造成的产品产量及品质的问题提供理论依据,具有重要现实意义。
杨树萍, 张琳, 徐继林. 藻类中添加剂的应用研究进展[J]. 生物技术通报, 2020, 36(2): 178-187.
YANG Shu-ping, ZHANG Lin, XU Ji-lin. Research Advance on the Application of Additives in Algae[J]. Biotechnology Bulletin, 2020, 36(2): 178-187.
[1] 陈艳梅, 石阳, 王明兹, 等. 海产养殖饵料微藻开发利用进展[J]. 生物技术通报, 2015, 31(9):60-65. [2] He B, Hou L, Dong M, et al.Transcriptome analysis in Haematoco-ccus pluvialis:astaxanthin induction by high light with acetate and Fe2+[J]. International Journal of Molecular Sciences, 2018, 19(1):175. [3] Sheikhzadeh N, Panchah IK, Asadpour R, et al.Effects of Haemat-ococcus pluvialis in maternal diet on reproductive performance and egg quality in rainbow trout(Oncorhynchus mykiss)[J]. Animal Reproduction Science, 2012, 130(1-2):119-123. [4] 陈忠伟, 邱洁, 李晓玉, 等. 螺旋藻抗炎和免疫增强作用的研究[J]. 中国畜牧兽医, 2019, 46(7):2135-2143. [5] Ammar SH, Khadim HJ, Mohamed AI.Cultivation of Nannochloropsis oculata and Isochrysis galbana microalgae in produced water for bioremediation and biomass production[J]. Environmental Technology Innovation, 2018, 10:132-142. [6] Daneshvara E, Zarrinmehr MJ, Hashtjin AM, et al.Versatile applications of freshwater and marine water microalgae in dairy wastewater treatment, lipid extraction and tetracycline biosorption[J]. Bioresource Technology, 2018, 268:523-530. [7] Gao ZQ, Meng CX, Zhang XW, et al.Induction of salicylic acid(SA)on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis[J]. Enzyme & Microbial Technology, 2012, 51(4):225-230. [8] Shaki F, Maboud HE, Niknam V.Growth enhancement and salt tolerance of Safflower(Carthamus tinctorius L.), by salicylic acid[J]. Current Plant Biology, 2018, 13:16-22. [9] Wu Y, Zhang D, Chu JY, et al.The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid[J]. Cell Reports, 2012, 1:639-647. [10] Mirshekari M, Einali A, Valizadeh J.Metabolic changes and activity pattern of antioxidant enzymes induced by salicylic acid treatment in green microalga Dunaliella salina under nitrogen deficiency[J]. Journal of Applied Phycology, 2019(31):1709-1719. [11] Kagale S, Divi UK, Krochko JE, et al.Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses[J]. Planta, 2007, 225(2):353-364. [12] Zhang A, Zhang J, Zhang J, et al.Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves[J]. Plant and Cell Physiology, 2011, 52(1):181-192. [13] Bajguz A.An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress[J]. Environmental and Experimental Botany, 2010, 68(2):175-179. [14] Huang XZ, Hou LY, Meng JJ, et al.The antagonistic action of abscisic acid and cytokinin signaling mediates drought stress response in, Arabidopsis[J]. Molecular Plant, 2018, 11(7):970-982. [15] 刘晓龙. 脱落酸(ABA)对水稻耐碱胁迫的诱抗效应及机理研究[D]. 北京:中国科学院大学, 2019. [16] Shen JL, Li CL, Wang M.Mitochondrial pyruvate carrier mediates abscisic acid-regulated stomatal closure and the drought response by affecting cellular pyruvate content in Arabidopsis thaliana[J]. BMC Plant Biology, 2017, 17(1):217. [17] 苗钧魁, 李铁松, 王长海. 海带中脱落酸的分离纯化及高效液相色谱分析[J]. 烟台大学学报:自然科学与工程版, 2009, 22(4):295-298 [18] Yoshida K, Igarashi E, Mukai M, et al.Induction of tolerance to oxidative stress in the green alga, Chlamydomonas reinhardtii, by abscisic acid[J]. Plant Cell and Environment, 2003, 26(3):451-457. [19] Liu JY, Wen Q, Song YM, et al.The growth and lipid productivity of Chlorella pyrenoidosa enhanced by plant hormones under ammonium stress[J]. Environmental Progress Sustainable Energy, 2017, 36:1187-1193. [20] Stirk WA, Bálint P, Tarkowská D, et al.Hormone profiles in microalgae:Gibberellins and brassinosteroids[J]. Plant Physiology and Biochemistry, 2013, 70(1):348-353. [21] Reinecke DM, Wickramarathna AD, Ozga JA, et al.Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea[J]. Plant Physiology, 2013, 163(2):929-945. [22] Eriksson S.GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation[J]. The Plant Cell Online, 2006, 18(9):2172-2181. [23] 李军, 周涛, 郑伟, 等. 外源GA3对太子参块根发育及赤霉素生物合成的调控[J]. 分子植物育种, 2018, 16(20):6867-6874. [24] Achard P, Renou JP, Berthomé R, et al.Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species[J]. Current Biology, 2008, 18(9):656-660. [25] Gao Z, Meng C, Gao H, et al.Carotenoid genes transcriptional regulation for astaxanthin accumulation in fresh water unicellular alga Haematococcus pluvialis by gibberellin A3(GA3)[J]. Indian Journal of Biochemistry & Biophysics, 2013, 50(6):548-553. [26] Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, et al.Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris(Chlorophyceae)[J]. Plant Physiology and Biochemistry, 2012, 52:52-65. [27] Hirschi KD. The Calcium Conundrum.Both versatile nutrient and specific signal[J]. Plant Physiology, 2004, 136(1):2438-2442. [28] 黄璐瑶, 李壮壮, 鞠龙泰, 等. 外源钙对盐胁迫下金银花离子含量及光合相关基因表达的影响[J]. 中国中药杂志, 2019, 44(12):2452-2458. [29] Dubiella U, Seybold H, Durian G, et al.Calcium-dependent protein kinase / NADPH oxidase activation circuit is required for rapid defense signal propagation[J]. Proceedings of the National Academy of Sciences, 2013, 110(21):1-6. [30] Larbi A, Kchaou H, Gaaliche B, et al.Supplementary potassium and calcium improves salt tolerance in olive plants[J]. Scientia Horticulturae, 2020, 260:108912. [31] Chen H, Zhang Y, He C, et al.Ca2+ signal transduction related to neutral lipid synthesis in an oil-producing green alga Chlorella sp C2[J]. Plant and cell Physiology, 2014, 55(3):634-644. [32] Zhao YT, Song XT, Yu L, et al.Influence of cadmium stress on the lipid production and cadmium bioresorption by Monoraphidium sp. QLY-1[J]. Energy Conversion and Management, 2019, 188:76-85. [33] Gupta V, Kumar M, Brahmbhatt H, et al.Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid-liquid microextraction method[J]. Plant Physiology and Biochemistry, 2011, 49(11):1259-1263. [34] 陈晶, 庞思琪, 赵秀兰. 外源生长素对镉胁迫下玉米幼苗生长及抗氧化系统的影响[J]. 植物生理学报, 2016(8):1191-1198. [35] Sakata T, Oshino T, Miura S, et al.Auxins reverse plant male sterility caused by high temperatures[J]. Proceedings of the National Academy of Sciences, 2010, 107(11):8569-8574. [36] Liu T, Liu F, Wang C, et al.The boosted biomass and lipid accumulation in, Chlorella vulgaris, by supplementation of synthetic phytohormone analogs[J]. Bioresource Technology, 2017, 232:44-52. [37] Zhao PC, Lin ZY, Wang IM, et al.Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewag treatment and its mechanism[J]. Science of the Total Environment, 2019. doi:10. 1016/j. scitotenv. 2019. 133650. [38] 崔伟婵, 李霜雯, 严善春. 不同光照下外源茉莉酸类物质对兴安落叶松防御蛋白的影响[J]. 东北林业大学学报, 2016, 44(9):78-81. [39] 山雨思, 代欢欢, 何潇, 等. 外源茉莉酸甲酯和水杨酸对盐胁迫下颠茄生理特性和次生代谢的影响[J]. 植物生理学报, 2019, 55(9):1335-1346. [40] 徐毅然. 番茄茉莉酸信号途径转录因子MYC2基因调控网络的构建及其增强子元件鉴定[D]. 泰安:山东农业大学, 2019. [41] 王重彬, 邹同雷, 孙雪, 等. 水杨酸和茉莉酸甲酯对高温龙须菜(Gracilariopsis lemaneiformis)理化及基因表达的影响[J]. 海洋与湖沼, 2015, 46(5):1132-1138. [42] 吕芳, 丁刚, 詹冬梅, 等. 茉莉酸甲酯对铜藻生长、抗氧化系统及岩藻黄素含量的影响[J]. 植物生理学报, 2019, 55(5):667-675. [43] Lu Y, Jiang P, Liu S, et al.Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes(bkts)in microalga Haematococcus pluvialis[J]. Bioresource Technology, 2010, 101(16):6468-6474. [44] 韩惠宾, 张国华, 王国栋. 细胞分裂素参与植物维管系统发育的信号转导研究进展[J]. 植物生理学报, 2015, 51(7):996-1002. [45] Nimir NEA, Zhou GS, Guo WS, et al.Effect of foliar application of GA3, kinetin, and salicylic acid on ions content, membrane permeability and photosynthesis under salt stress of sweet sorghum[J]. Canadian Journal of Plant Science, 2017, 95:525-535. [46] 刘洋. 细胞分裂素和氮素共同作用对匍匐翦股颖(Agrostis stolonifera)抗旱性的影响研究[D]. 北京:北京林业大学, 2015. [47] Udayan A, Kathiresan S, Arumugam M.Kinetin and gibberellic acid(GA3)act synergistically to produce high value polyunsaturated fatty acids in, Nannochloropsis oceanica CASA CC201[J]. Algal Research, 2018, 32:182-192. [48] Wu G, Gao Z, Du H, et al, The effects of abscisic acid, salicylic acid and jasmonic acid on lipid accumulation in two freshwater Chlorella strains[J]. Journal of General and Applied Microbiology, 2018, 64:42-49. [49] Chu J, Li Y, Cui Y, et al, The influences of phytohormones on triacylglycerol accumulation in an oleaginous marine diatom Phaeodactylum tricornutum[J]. Journal of Applied Phycology, 2019, 31:1009-1019. [50] Park WK, Yoo G, Moon M, et al.Phytohormone supplementation significantly increases growth of chlamydomonas reinhardtii cultivated for biodiesel production[J]. Applied Biochemistry and Biotechnology, 2013, 171(5):1128-1142. [51] 肖丹曦. 植物激素ABA和GA对紫球藻生长的影响[D]. 广州:暨南大学, 2009. [52] 史成颖, 蔡为荣, 甘旭华, 等. 6种植物生长调节剂对钝顶螺旋藻生长的影响[J]. 安徽农业大学学报, 2004(1):26-29. [53] Bajguz A, Piotrowska-Niczyporuk A.Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris(Trebouxiophyceae)[J]. Plant Physiology and Biochemistry, 2013, 71:290-297. [54] 王婷, 赵培, 王雪青. 低温环境对球等鞭金藻3011抗氧化系统和二十二碳六烯酸产量的影响[J]. 食品科学, 2016, 37(1):126-132. [55] 任晓咏. 低温胁迫对三角褐指藻生长和生理生化影响及其LEA基因的克隆[D]. 大连:辽宁师范大学, 2011. [56] 常博文, 钟鹏, 刘杰, 等. 低温胁迫和赤霉素对花生种子萌发和幼苗生理响应的影响[J]. 作物学报, 2019, 45(1):118-130. [57] 刘思宇. 外源物质对低温胁迫下番茄幼苗生理指标的影响[J]. 北方园艺, 2010(17):44-46. [58] 章锦涛, 王华, 王松, 等. 外施脱落酸对低温胁迫下山茶花生理生化指标的影响[J]. 安徽农业大学学报, 2017, 44(1):142-145. [59] 陈文笔, 张琳, 徐继林, 等. 外源水杨酸提高微拟球藻低温抗逆性的应用[J]. 农业生物技术学报, 2017, 25(2):240-249. [60] 吕冰心, 常蓉, 李博生. 基于蛋白质组学对螺旋藻在高温胁迫下响应机制的初步研究[J]. 植物生理学报, 2018, 54(5):904-916. [61] 雷亚萍, 许丽红, 曾臻, 等. 共生与非共生爪哇伪枝藻对高温胁迫的响应[J]. 水生生物学报, 2017, 41(3):671-676. [62] 丁聪聪, 徐年军, 张琳, 等. 水杨酸对蛋白核小球藻(Chlorella pyrenoidosa)生长及抗逆相关基因的影响[J]. 海洋与湖沼, 2015, 46(6):1451-1460. [63] 李静, 王俏俏, 徐年军, 等. 24-表油菜素内酯对龙须菜抗高温胁迫的研究[J]. 海洋学报, 2014, 36(8):82-90. [64] 朱招波, 孙雪, 徐年军, 等. 水杨酸对龙须菜抗高温生理的影响[J]. 水产学报, 2012, 36(8):1304-1312. [65] 贺亮. 高温胁迫下半叶马尾藻中国变种生理生化响应及其耐热机制的初步研究[D]. 湛江:广东海洋大学, 2017. [66] 张倩. 酸性和高温条件下4株小球藻的生长及总脂含量研究[C]. 2014中国环境科学学会学术年会论文集, 2014. [67] 史飞飞, 程宇娇, 马浩天, 等. 利用赤霉素提高微藻耐酸性的研究[J]. 山西农业大学学报:自然科学版, 2018, 38(3):30-35. [68] 李建宏, 浩云涛, 翁永萍. Cd2+胁迫条件下椭圆小球藻的生理应答[J]. 水生生物学报, 2004(6):659-663. [69] 全秋梅, 贺亮, 梁忠, 等. 镉离子胁迫下半叶马尾藻中国变种生理生化响应的研究[J]. 海洋湖沼通报, 2019(2):139-146. [70] Kovacik J, Micalizzi G, Dresler S, et al.Metabolic responses of Ulva compressa to single and combined heavy metals[J]. Chemosphere, 2018, 213:384-394. [71] Bajguz A.Blockade of heavy metals accumulation in Chlorella vulgaris cells by 24-epibrassinolide[J]. Plant Physiology and Biochemistry(Paris), 2000, 38(10):797-801. [72] 刘成圣, 唐学玺. UV-B辐射对三角褐指藻的膜酯脱酯化伤害[J]. 海洋水产研究, 2002(3):37-40. [73] 屠燕萍, 俞泓伶, 谢志浩. 三角褐指藻和小角毛藻对UV-B辐射增强的生理生化响应[J]. 生态科学, 2013, 32(4):474-479. [74] Han MM, Hu F, Wang K, et al.Effect of different kinds of exogen-ous auxin on the growth of rice roots under cadmium stress[J]. Agricultural Science & Technology, 2010, 11(7):45-48. [75] 韩燕. 细胞分裂素和生长素对UV-B诱导气孔关闭的效应及其机制研究[D]. 西安:陕西师范大学, 2007. [76] 卓品利, 钟佳丽, 王东, 等. 不同光照条件下外源水杨酸对浒苔响应紫外辐射胁迫的影响[J]. 应用生态学报, 2017, 28(6):1977-1983. [77] Liang Y, Cao CH, Tian CY, et al.Changes in cell density and chlorophyll fluorescence with salinity stress in two Isochrysis galbana strains(Prymnesiophyceae)[J]. Biocontrol Science and Technology, 2014, 145(1):81-98. [78] 赵萍, 邹宁, 孙东红, 等. 盐度对三角褐指藻生长及有机质积累的影响[J]. 中国油料作物学报, 2013, 35(2):217-220. [79] 魏显珍, 王淑智, 潘响亮. 盐胁迫对喜钙念珠藻生理活性的影响及钙的胁迫缓解效应[J]. 应用与环境生物学报, 2013, 19(4):655-662. [80] 吴以平, 董树刚. 钙对高盐胁迫下缘管浒苔和孔石莼生理生化过程的影响[J]. 海洋科学, 2000(8):11-14. [81] 夏蕊琪, 査婧, 曹媛媛, 等. 螺旋藻在光胁迫时的抗逆性研究[J]. 生物学杂志, 2013, 30(5):45-48. [82] 陈陆丹, 许凯, 徐燕, 等. 坛紫菜应答高光强胁迫的生理指标分析[J]. 应用海洋学学报, 2016, 35(3):399-404. [83] 巩东辉, 王志忠, 季祥, 等. 低温、强光胁迫对鄂尔多斯钝顶节旋藻光合速率及光合色素含量的影响[J]. 内蒙古农业大学学报:自然科学版, 2016, 37(6):65-69. [84] 崔丹丹, 杨柳, 孙雪, 等. 玉米素和水杨酸对雨生红球藻(Haematococcus pluvialis)生长及虾青素积累的影响[J]. 海洋与湖沼, 2018, 49(3):682-691. |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[4] | 胡海琳, 徐黎, 李晓旭, 王晨璨, 梅曼, 丁文静, 赵媛媛. 小肽激素调控植物生长发育及逆境生理研究进展[J]. 生物技术通报, 2023, 39(7): 13-25. |
[5] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[6] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[7] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[8] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[9] | 薛皦, 朱庆锋, 冯彦钊, 陈沛, 刘文华, 张爱霞, 刘勤坚, 张琪, 于洋. 植物基因上游开放阅读框的研究进展[J]. 生物技术通报, 2023, 39(4): 157-165. |
[10] | 魏明, 王欣玉, 伍国强, 赵萌. NAD依赖型去乙酰化酶SRT在植物表观遗传调控中的作用[J]. 生物技术通报, 2023, 39(4): 59-70. |
[11] | 桑田, 王鹏程. 植物SUMO化修饰研究进展[J]. 生物技术通报, 2023, 39(3): 1-12. |
[12] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[13] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[14] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[15] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||