[1] |
dos Santos SC, Sá-Correia IB. Yeast toxicogenomics:lessons from a eukaryotic cell model and cell factory[J]. Current Opinion in Biotechnology, 2015,33(1):183-191.
doi: 10.1016/j.copbio.2015.03.001
URL
|
[2] |
Gil FN, Gonçalves AC, Becker JD, et al. Comparative analysis of transcriptomic responses to sub-lethal levels of six environmentally relevant pesticides in Saccharomyces cerevisiae[J]. Ecotoxicology, 2018,27(7):871-889.
doi: 10.1007/s10646-018-1929-1
URL
pmid: 29611082
|
[3] |
Bereketoglu C, Arga KY, Eraslan S, et al. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A[J]. Current Genetics, 2017,63(2):253-274.
doi: 10.1007/s00294-016-0633-z
URL
pmid: 27460658
|
[4] |
Wu G, Xu Z, Jönsson LJJMCF. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion[J]. Microbial Cell Factories, 2017,16(1):199.
doi: 10.1186/s12934-017-0811-9
URL
pmid: 29137634
|
[5] |
Bereketoglu C, Arga KY, Eraslan S, et al. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure[J]. Physiological Genomics, 2017,49(10):549-566.
doi: 10.1152/physiolgenomics.00034.2017
URL
pmid: 28887370
|
[6] |
Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass[J]. Applied Microbiology and Biotechnology, 2004,66(1):10-26.
doi: 10.1007/s00253-004-1642-2
URL
|
[7] |
Wang X, Liang Z, Hou J, et al. The absence of the transcription factor Yrr1p, identified from comparative genome profiling, Increased vanillin tolerance due to enhancements of ABC transporters expressing, rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017,8:367.
doi: 10.3389/fmicb.2017.00367
URL
pmid: 28360888
|
[8] |
Cui Z, Shiraki T, Hirata D, et al. Yeast gene YRR1, which is required for resistance to 4-nitroquinoline N-oxide, mediates transcriptional activation of the multidrug resistance transporter gene SNQ2[J]. Molecular Microbiology, 1998,29(5):1307-1315.
doi: 10.1046/j.1365-2958.1998.01027.x
URL
pmid: 9767597
|
[9] |
Le Crom S, Devaux F, Marc P, et al. New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system[J]. Molecular and Cellular Biology, 2002,22(8):2642-2649.
doi: 10.1128/mcb.22.8.2642-2649.2002
URL
pmid: 11909958
|
[10] |
Zhang X, Cui Z, Miyakawa T, et al. Cross-talk between transcriptio-nal regulators of multidrug resistance in Saccharomyces cerevi-siae[J]. The Journal of Biological Chemistry, 2001,276(12):8812-8819.
doi: 10.1074/jbc.M010686200
URL
pmid: 11134057
|
[11] |
Kodo N, Matsuda T, Doi S, et al. Salicylic acid resistance is conferred by a novel YRR1 mutation in Saccharomyces cerevisiae[J]. Biochemical and Biophysical Research Communications, 2013, 434(1):42-47.
doi: 10.1016/j.bbrc.2013.03.069
URL
pmid: 23545261
|
[12] |
Teixeira MC, Dias PJ, Simoes T, et al. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1[J]. Biochemical and Biophysical Research Communications, 2008,367(2):249-255.
doi: 10.1016/j.bbrc.2007.12.056
URL
pmid: 18086556
|
[13] |
Akache B, Turcotte B. New regulators of drug sensitivity in the family of yeast zinc cluster proteins[J]. The Journal of Biological Chemistry, 2002,277(24):21254-21260.
doi: 10.1074/jbc.M202566200
URL
pmid: 11943786
|
[14] |
Akache B, Macpherson S, Sylvain MA, et al. Complex interplay among regulators of drug resistance genes in Saccharomyces cerev-isiae[J]. The Journal of Biological Chemistry, 2004,279(27):27855-27860.
doi: 10.1074/jbc.M403487200
URL
pmid: 15123673
|
[15] |
Schjerling P, Holmberg S. Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators[J]. Nucleic Acids Research, 1996,23(24):4599-4607.
|
[16] |
Gallagher JEG, Zheng W, Rong XQ, et al. Divergence in a master variator generates distinct phenotypes and transcriptional responses[J]. Genes & Development, 2014,13(28):409-421.
|
[17] |
Wang X, Liang Z, Hou J, et al. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance[J]. BMC Biotechnol Biomedcentral, 2016,16(1):31.
|
[18] |
Katzmann DJ, Hallstrom TC, Voet M, et al. Expression of an ATP-binding cassette transporter-encoding gene(YOR1)is required for oligomycin resistance in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 1995,15(12):6875-6883.
doi: 10.1128/mcb.15.12.6875
URL
pmid: 8524254
|
[19] |
Servos J, Haase E, Brendel MJM, et al. Gene SNQ2 of Saccharomyces cerevislae, which confers resistance to 4-nitroquinoline-N-oxide and other chemicals, encodes a 169 kDa protein homologous to ATP-dependent permeases[J]. Molecular and General Genetics, 1993,236(2-3):214-218.
doi: 10.1007/BF00277115
URL
pmid: 8437567
|
[20] |
Iwaki A, Ohnuki S, Suga Y, et al. Vanillin inhibits translation and induces messenger ribonucleoprotein(mRNP)granule formation in saccharomyces cerevisiae:application and validation of high-content, image-based profiling[J]. PLoS One, 2013,8(4):e61748.
doi: 10.1371/journal.pone.0061748
URL
pmid: 23637899
|
[21] |
Li YC, Gou ZX, Zhang Y, et al. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation[J]. Brazilian Journal of Microbiology, 2017,48(4):791-800.
doi: 10.1016/j.bjm.2016.11.011
URL
pmid: 28629968
|
[22] |
Shen Y, Li H, Wang X, et al. High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity[J]. Journal of Industrial Microbiology & Biotechnology, 2014,41(11):1637-1645.
doi: 10.1007/s10295-014-1515-3
URL
pmid: 25261986
|
[23] |
Wang X, Liang Z, Hou J, et al. The absence of the transcription factor Yrr1p, identified from comparative genome profiling, increased vanillin tolerance due to enhancements of ABC transporters expressing, rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017,8(1):367.
|
[24] |
Devaux F, Philippe M, Bouchoux C, et al. An artificial transcription activator mimics the genome-wide properties of the yeast Pdr1 transcription factor[J]. EMBO Reports, 2001,2(6):493-498.
doi: 10.1093/embo-reports/kve114
URL
pmid: 11415981
|
[25] |
DeRisi J, van den Hazel P, Marc P, et al. Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants[J]. FEBS Letters, 2000,470(1):156-160.
doi: 10.1016/S0014-5793(00)01294-1
URL
|
[26] |
Nishida-Aoki N, Mori H, Kuroda K, et al. Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast[J]. Current Genetics, 2015,61(2):153-164.
doi: 10.1007/s00294-014-0463-9
URL
pmid: 25487302
|
[27] |
Hikkel I, Lucau-Danila A, Delaveau T, et al. A general strategy to uncover transcription factor properties identifies a new regulator of drug resistance in yeast[J]. The Journal of Biological Chemistry, 2003,278(13):11427-11432.
doi: 10.1074/jbc.M208549200
URL
pmid: 12529331
|
[28] |
Lucau-Danila A, Delaveau T, Lelandais G, et al. Competitive promoter occupancy by two yeast paralogous transcription factors controlling the multidrug resistance phenomenon[J]. The Journal of Biological Chemistry, 2003,278(52):52641-52650.
doi: 10.1074/jbc.M309580200
URL
pmid: 14512416
|