生物技术通报 ›› 2021, Vol. 37 ›› Issue (7): 127-136.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0454
收稿日期:
2021-04-13
出版日期:
2021-07-26
发布日期:
2021-08-13
作者简介:
陈倩,女,硕士研究生,研究方向:植物线虫病害及其防治;E-mail: 基金资助:
CHEN Qian(), ZHANG Lu-yuan, CHEN Bo-chang, WU Hai-yan()
Received:
2021-04-13
Published:
2021-07-26
Online:
2021-08-13
摘要:
疣孢漆斑菌(Myrothecium verrucaria)ZW-2菌株对大豆孢囊线虫具有(Heterodera glycines)明显的杀线虫活性,为了确定该菌株的最优发酵条件以及代谢产物,采用4因素3水平的正交试验进行了发酵条件优化以及代谢组学分析。结果表明:菌株ZW-2以Czapek培养基为基础培养基,最佳培养温度为28℃,摇床转速为180 r/min,装瓶量为100 mL,培养基pH为8,最佳碳源和氮源为蔗糖和硝酸钠。经代谢组学分析,根据代谢物质荷比、精确分子量及一级碎片离子得分等信息共筛选出20种差异代谢物,包括酰胺类化合物和脂肪族化合物。菌株ZW-2上述试验结果为进一步开发利用该菌株提供重要的理论和应用价值。
陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136.
CHEN Qian, ZHANG Lu-yuan, CHEN Bo-chang, WU Hai-yan. Optimization of Fermentation Conditions of Myrothecium verrucaria ZW-2,a Biocontrol Strain Against Heterodera glycines and Analysis of Active Substances[J]. Biotechnology Bulletin, 2021, 37(7): 127-136.
编号 Code | A发酵温度 Fermentation temperature/℃ | B摇床转速Shaking speed/(r·min-1) | C 培养基 pH Medium pH | D 装瓶量Bottle volume/ (mL·250 mL-1) | 72 h校正死亡率Adjusted mortality rate at 72 h/% |
---|---|---|---|---|---|
1 | 26 | 140 | 6 | 75 | 75.66 |
2 | 26 | 160 | 7 | 100 | 84.37 |
3 | 26 | 180 | 8 | 125 | 88.97 |
4 | 28 | 140 | 7 | 125 | 82.64 |
5 | 28 | 160 | 8 | 75 | 87.84 |
6 | 28 | 180 | 6 | 100 | 86.19 |
7 | 30 | 140 | 8 | 100 | 92.19 |
8 | 30 | 160 | 7 | 125 | 80.34 |
9 | 30 | 180 | 6 | 75 | 78.22 |
K1 | 249.00 | 250.49 | 240.07 | 241.72 | |
K2 | 256.67 | 252.55 | 247.35 | 262.75 | |
K3 | 250.75 | 253.38 | 269.00 | 251.95 | |
k1 | 83 | 83.50 | 80.02 | 80.57 | |
k2 | 85.56 | 84.18 | 82.45 | 87.58 | |
k3 | 83.58 | 84.46 | 89.67 | 83.98 | |
R | 2.56 | 0.96 | 9.65 | 7.01 | |
主次顺序 Primary and secondary order | B>A>D>C | ||||
最优水平 Optimal level | A2 | B3 | C3 | D2 | |
最优组合 Optimal combination | A2B3C3D2 |
表1 不同发酵温度、摇床转速、培养基pH和装瓶量的ZW-2菌株发酵液处理大豆孢囊线虫J2校正死亡率
Table 1 Adjusted mortality rate of H. glycines J2 treated with ZW-2 strain fermentation broth under different fermentation temperature,shaking speed,medium pH and bottle volume
编号 Code | A发酵温度 Fermentation temperature/℃ | B摇床转速Shaking speed/(r·min-1) | C 培养基 pH Medium pH | D 装瓶量Bottle volume/ (mL·250 mL-1) | 72 h校正死亡率Adjusted mortality rate at 72 h/% |
---|---|---|---|---|---|
1 | 26 | 140 | 6 | 75 | 75.66 |
2 | 26 | 160 | 7 | 100 | 84.37 |
3 | 26 | 180 | 8 | 125 | 88.97 |
4 | 28 | 140 | 7 | 125 | 82.64 |
5 | 28 | 160 | 8 | 75 | 87.84 |
6 | 28 | 180 | 6 | 100 | 86.19 |
7 | 30 | 140 | 8 | 100 | 92.19 |
8 | 30 | 160 | 7 | 125 | 80.34 |
9 | 30 | 180 | 6 | 75 | 78.22 |
K1 | 249.00 | 250.49 | 240.07 | 241.72 | |
K2 | 256.67 | 252.55 | 247.35 | 262.75 | |
K3 | 250.75 | 253.38 | 269.00 | 251.95 | |
k1 | 83 | 83.50 | 80.02 | 80.57 | |
k2 | 85.56 | 84.18 | 82.45 | 87.58 | |
k3 | 83.58 | 84.46 | 89.67 | 83.98 | |
R | 2.56 | 0.96 | 9.65 | 7.01 | |
主次顺序 Primary and secondary order | B>A>D>C | ||||
最优水平 Optimal level | A2 | B3 | C3 | D2 | |
最优组合 Optimal combination | A2B3C3D2 |
图1 菌株ZW-2在不同碳源培养基中发酵1周的5倍稀释发酵液处理大豆孢囊线虫J2校正死亡率 相同柱子上相同字母表示根据Duncan's新复极差法检验在0.05水平无差异显著,下同
Fig. 1 Adjusted mortality rate of H. glycines J2 treated with 5-fold diluted fermentation broth of strain ZW-2 in different carbon source medium for 1 week The same letter on the same column indicates that there is no significant difference at the level of 0.05 according to Duncan's new multiple range test,the same below
图2 菌株ZW-2在不同氮源培养基中发酵1周的5倍稀释发酵液处理大豆孢囊线虫J2校正死亡率
Fig.2 Adjusted mortality rate of H. glycines J2 treated with 5-fold diluted fermentation broth of strain ZW-2 in different nitrogen source medium for 1 week
图3 ZW-2菌株液体发酵液流分正离子(A)和负离子(B)PCA散点图 1:ZW-2菌株液体发酵液流分;2:Czapek培养基溶于分析纯甲醇
Fig. 3 PCA score plot of positive(A)and negative(B)ions in the fermentation broth of strain ZW-2 1:Fermentation broth of strain ZW-2. 2:Czapek culture medium solved in analytical pure methanol
活性物质英文名 Name of an active substance in English | 中文名 Name in Chinese | 分子式 Formula | 质荷比 M/z | 得分 Score | 保留时间 Retaining time/min |
---|---|---|---|---|---|
Trimethylsilyl N,N-bis(trimethylsilyl)glycylglycinate | - | C13H32N2O3Si3 | 348.1724 | 36.9 | 9.6076 |
Glycol palmitate | 乙二醇棕榈酸酯 | C18H36O3 | 323.2568 | 49 | 8.01246 |
Stearyl glycol | 硬脂二醇 | C18H38O2 | 309.2784 | 48.5 | 10.27076 |
Tris(butoxyethyl)Phosphate | 磷酸三(丁氧基乙基)酯 | C18H39O7P | 399.2522 | 35.5 | 6.4744 |
2-[4-(2,4-Dichlorobenzoyl)-1,3-dimethylpyrazol-5-yloxy]acetophenone | 2-(4-(2,4-二氯苯甲酰基)-1,3-二甲基吡唑-5-基氧)乙酰苯 | C20H16Cl2N2O3 | 385.0529 | 35.6 | 2.7755 |
2-Nonadecanone,O-methyloxime | - | C20H41NO | 311.3186 | 39.3 | 10.6652 |
p-(6-Chloro-4-phenyl-2-quinolyl)aniline | - | C21H15ClN2 | 330.0915 | 37.1 | 0.7172 |
Isoscoparin | 异金雀花素 | C22H22O11 | 445.1125 | 44.2 | 11.5114 |
Octylphenoxy Polyethoxyethanol | NP-40乙基苯基聚乙二醇 | C22H38O5 | 365.2676 | 49.9 | 7.2005 |
8,11-Dihydroxypimar-15-en-12-yl acetate | - | C22H36O4 | 365.2676 | 49.4 | 7.2005 |
(2-Methyl-3-biphenylyl)methyl 3-[(1Z)-2-Chloro-3,3,3-trifluoro-1-propenyl]-2,2-dimethylcyclopropanecarboxylic acid(2-methylbiphenyl-3-yl)methyl ester | 氟氯菊酯 | C23H22ClF3O2 | 445.1125 | 42.9 | 11.5114 |
3,6,9,12,15,18-Hexaoxatriacontan-1-ol | 六聚乙二醇单十二醚 | C24H50O7 | 450.3528 | 49.7 | 9.4589 |
Pyrinoline | 吡诺林 | C27H20N4O | 416.1608 | 39.1 | 10.1850 |
Verrucarin A | 疣孢菌素A | C27H34O9 | 541.1870 | 36.5 | 5.61113 |
Verruculogen | 疣孢青霉原 | C27H33N3O7 | 512.2436 | 28.2 | 6.4058 |
3-Hydroxy-17,23-epoxyveratraman-11-one | - | C27H39NO3 | 426.2990 | 51.9 | 7.0519 |
Epidihydrocholesterin | 胆甾烷醇 | C27H48O | 427.3301 | 42.1 | 10.1049 |
Roridin A | 漆斑菌素A | C29H40O9 | 571.2342 | 43.6 | 5.2110 |
4,4'-Furfurylidenebis(2,6-di-tert-butylphenol) | - | C33H46O3 | 513.3318 | 37.3 | 8.0467 |
N,N-Didodecyl-1-dodecanamine | 三月桂胺 | C36H75N | 522.5961 | 39.1 | 10.5508 |
表2 标志性差异物中可能发酵液活性物质列表
Table 2 List of possible fermentation broth active substances in differences iconic objects
活性物质英文名 Name of an active substance in English | 中文名 Name in Chinese | 分子式 Formula | 质荷比 M/z | 得分 Score | 保留时间 Retaining time/min |
---|---|---|---|---|---|
Trimethylsilyl N,N-bis(trimethylsilyl)glycylglycinate | - | C13H32N2O3Si3 | 348.1724 | 36.9 | 9.6076 |
Glycol palmitate | 乙二醇棕榈酸酯 | C18H36O3 | 323.2568 | 49 | 8.01246 |
Stearyl glycol | 硬脂二醇 | C18H38O2 | 309.2784 | 48.5 | 10.27076 |
Tris(butoxyethyl)Phosphate | 磷酸三(丁氧基乙基)酯 | C18H39O7P | 399.2522 | 35.5 | 6.4744 |
2-[4-(2,4-Dichlorobenzoyl)-1,3-dimethylpyrazol-5-yloxy]acetophenone | 2-(4-(2,4-二氯苯甲酰基)-1,3-二甲基吡唑-5-基氧)乙酰苯 | C20H16Cl2N2O3 | 385.0529 | 35.6 | 2.7755 |
2-Nonadecanone,O-methyloxime | - | C20H41NO | 311.3186 | 39.3 | 10.6652 |
p-(6-Chloro-4-phenyl-2-quinolyl)aniline | - | C21H15ClN2 | 330.0915 | 37.1 | 0.7172 |
Isoscoparin | 异金雀花素 | C22H22O11 | 445.1125 | 44.2 | 11.5114 |
Octylphenoxy Polyethoxyethanol | NP-40乙基苯基聚乙二醇 | C22H38O5 | 365.2676 | 49.9 | 7.2005 |
8,11-Dihydroxypimar-15-en-12-yl acetate | - | C22H36O4 | 365.2676 | 49.4 | 7.2005 |
(2-Methyl-3-biphenylyl)methyl 3-[(1Z)-2-Chloro-3,3,3-trifluoro-1-propenyl]-2,2-dimethylcyclopropanecarboxylic acid(2-methylbiphenyl-3-yl)methyl ester | 氟氯菊酯 | C23H22ClF3O2 | 445.1125 | 42.9 | 11.5114 |
3,6,9,12,15,18-Hexaoxatriacontan-1-ol | 六聚乙二醇单十二醚 | C24H50O7 | 450.3528 | 49.7 | 9.4589 |
Pyrinoline | 吡诺林 | C27H20N4O | 416.1608 | 39.1 | 10.1850 |
Verrucarin A | 疣孢菌素A | C27H34O9 | 541.1870 | 36.5 | 5.61113 |
Verruculogen | 疣孢青霉原 | C27H33N3O7 | 512.2436 | 28.2 | 6.4058 |
3-Hydroxy-17,23-epoxyveratraman-11-one | - | C27H39NO3 | 426.2990 | 51.9 | 7.0519 |
Epidihydrocholesterin | 胆甾烷醇 | C27H48O | 427.3301 | 42.1 | 10.1049 |
Roridin A | 漆斑菌素A | C29H40O9 | 571.2342 | 43.6 | 5.2110 |
4,4'-Furfurylidenebis(2,6-di-tert-butylphenol) | - | C33H46O3 | 513.3318 | 37.3 | 8.0467 |
N,N-Didodecyl-1-dodecanamine | 三月桂胺 | C36H75N | 522.5961 | 39.1 | 10.5508 |
[1] |
Rocha LF, Gage KL, Pimentel MF, et al. Weeds hosting the soybean cyst nematode(Heterodera glycines ichinohe):management implications in agroecological systems[J]. Agronomy, 2021, 11(1):146.
doi: 10.3390/agronomy11010146 URL |
[2] |
Legner CM, Tylka GL, Pandey S. Robotic agricultural instrument for automated extraction of nematode cysts and eggs from soil to improve integrated pest management[J]. Sci Rep, 2021, 11:3212.
doi: 10.1038/s41598-021-82261-w URL |
[3] | 王晓磊, 李峰, 周学超, 等. 菌线克种衣剂对赤峰地区重茬大豆生育与产量的影响[J]. 大豆科技, 2020(1):14-20. |
Wang XL, Li F, Zhou XC, et al. Effects of junxianke seed coating on growth and yield of continuous soybean in Chifeng area[J]. Soybean Sci Technol, 2020(1):14-20. | |
[4] | 于维, 栾奕, 李明姝, 等. 大豆土传病害抗性资源筛选[J]. 东北农业科学, 2020, 45(3):12-15, 21. |
Yu W, Luan Y, Li MS, et al. Evaluation of soybean cultivars(lines)for resistance to soil borne[J]. J Northeast Agric Sci, 2020, 45(3):12-15, 21. | |
[5] | 李婷, 黄文坤, 彭德良, 等. 3株生防真菌发酵液对大豆孢囊线虫的防治效果[J]. 华中农业大学学报, 2017, 36(1):42-46. |
Li T, Huang WK, Peng DL, et al. Control efficiency of three fungal strains’ fermentation broth on soybean cyst nematode(Heterodera glycines)[J]. J Huazhong Agric Univ, 2017, 36(1):42-46. | |
[6] |
Schneider SM, Rosskopf EN, Leesch JG, et al. United states department of agriculture-agricultural research service research on alternatives to methyl bromide:pre-plant and post-harvest[J]. Pest Manag Sci, 2003, 59(6/7):814-826.
doi: 10.1002/(ISSN)1526-4998 URL |
[7] | 刘治波, 刘志俊, 冯文萍, 等. 溴甲烷的禁用及其替代品的开发[J]. 农药, 1999, 38(1):38-38, 40 |
Liu ZB, Liu ZJ, Feng WP, et al. Prohibition of methyl bromide and development of its substitutes[J]. Pesticides, 1999, 38(1):38-38, 40 | |
[8] |
Campos-Garcia J, Martinez DS, Rezende KF, et al. Histopathological alterations in the gills of Nile tilapia exposed to carbofuran and multiwalled carbon nanotubes[J]. Ecotoxicol Environ Saf, 2016, 133:481-488.
doi: 10.1016/j.ecoenv.2016.07.041 URL |
[9] |
Li J, Zou C, Xu J, et al. Molecular mechanisms of nematode-nematophagous microbe interactions:basis for biological control of plant-parasitic Nematodes[J]. Annu Rev Phytopathol, 2015, 53:67-95.
doi: 10.1146/annurev-phyto-080614-120336 URL |
[10] | Kepenekci İ, Dura O, Dura S. Determination of nematicidal effects of some biopesticides against root-knot nematode(Meloidogyne incognita)on kiwifruit[J]. J Agric Sci Technol A, 2017, 7(8):546-551. |
[11] |
Zhou Y, Chen J, Zhu X, et al. Efficacy of Bacillus megaterium strain Sneb207 against soybean cyst nematode(Heterodera glycines)in soybean[J]. Pest Manag Sci, 2021, 77(1):568-576.
doi: 10.1002/ps.v77.1 URL |
[12] | 李晓明, 杜春梅, 郑楠, 等. 芽孢杆菌BL-21、HNDF2对大豆胞囊线虫抑制效果的研究[J]. 大豆科学, 2011, 30(4):710-712. |
Li XM, Du CM, Zheng N, et al. Inhibitory effect of Bacillus BL-21, HNDF2 on soybean cyst nematode[J]. Soybean Sci, 2011, 30(4):710-712. | |
[13] |
Warrior P, Rehberger LA, Beach M, et al. Commercial development and introduction of DiTeraTM, a new nematicide[J]. Pestic Sci, 1999, 55(3):376-379.
doi: 10.1002/(SICI)1096-9063(199903)55:3<>1.0.CO;2-5 URL |
[14] |
Wilson MJ, Jackson TA. Progress in the commercialisation of bionematicides[J]. BioControl, 2013, 58(6):715-722.
doi: 10.1007/s10526-013-9511-5 URL |
[15] |
Nguyen LTT, Jang JY, Kim TY, et al. Nematicidal activity of verrucarin A and roridin A isolated from Myrothecium verrucaria against Meloidogyne incognita[J]. Pestic Biochem Physiol, 2018, 148:133-143.
doi: S0048-3575(17)30508-4 pmid: 29891364 |
[16] |
Dong HL, Zhou XG, Wang JM, et al. Myrothecium verrucaria strain X-16, a novel parasitic fungus to Meloidogyne hapla[J]. Biol Control, 2015, 83:7-12.
doi: 10.1016/j.biocontrol.2014.12.016 URL |
[17] |
Wu HY, Zhang LY, Zhou XB. Effects of Myrothecium verrucaria ZW-2 fermentation filtrates on various plant-parasitic Nematodes[J]. J Plant Dis Prot, 2020, 127(4):545-552.
doi: 10.1007/s41348-020-00336-8 URL |
[18] | 张洁, 夏明聪, 刘红彦, 等. 低剂量棉隆熏蒸联合生物菌肥防治黄瓜根结线虫病的应用效果[J]. 植物保护学报, 2019, 46(4):824-831. |
Zhang J, Xia MC, Liu HY, et al. Efficacy of dazomet fumigation and bioorganic fertilizer in integrated control of cucumber root-knot nematode[J]. J Plant Prot, 2019, 46(4):824-831. | |
[19] | 姚裕群, 甘建华, 黄荣韶, 等. 越南槐内生真菌GRPH-0的抗真菌活性及其鉴定[J]. 中国抗生素杂志, 2017, 42(2):107-111. |
Yao YQ, Gan JH, Huang RS, et al. Antifungal activity and taxonomic identification of endophytic fungus GRPH-0 isolated from Sophora tonkinensis Gapnep[J]. Chin J Antibiot, 2017, 42(2):107-111. | |
[20] | 卿朕, 周秋艳, 孙文斌, 等. 广西地不容内生真菌疣孢漆斑菌DBR-11的抑菌活性[J]. 河南农业科学, 2016, 45(5):77-81, 86. |
Qing Z, Zhou QY, Sun WB, et al. Antimicrobial activity of endophytic fungus Myrothecium verrucaria DBR-11 from Stephania kwangsiensis[J]. J Henan Agric Sci, 2016, 45(5):77-81, 86. | |
[21] | 康敏, 郭大乐, 胡佳, 等. 疣孢漆斑菌发酵液的化学成分及其农药活性的研究[J]. 天然产物研究与开发, 2015, 27(11):1892-1899, 1984. |
Kang M, Guo DL, Hu J, et al. Chemical constituents in the broth of Myrothecium verrucaria with agrochemical activities[J]. Nat Prod Res Dev, 2015, 27(11):1892-1899, 1984. | |
[22] | 董海龙, 王海香, 张作刚, 等. 抑杀根结线虫的疣孢漆斑菌代谢活性物质的分离鉴定[J]. 植物保护学报, 2019, 46(3):721-722. |
Dong HL, Wang HX, Zhang ZG, et al. Isolation and identification of nematicidal active substances from the soil fungus Myrothecium verrucaria metabolites[J]. J Plant Prot, 2019, 46(3):721-722. | |
[23] |
Hoagland RE, Boyette CD, Jordan RH, et al. Effects of Myrothecium verrucaria on two glyphosate-resistant Amaranthus palmeri biotypes differing in betacyanin content[J]. Am J Plant Sci, 2020, 11(2):214-225.
doi: 10.4236/ajps.2020.112017 URL |
[24] | 蒙春蕾, 王勇勇, 黄敏, 等. 不同氮源对海洋真菌BH0531发酵液杀线虫活性的影响[J]. 江苏农业科学, 2015, 43(5):121-123. |
Meng CL, Wang YY, Huang M, et al. Effects of different nitrogen sources on nematicidal activity of fermentation broth of marine fungus BH0531[J]. Jiangsu Agric Sci, 2015, 43(5):121-123. | |
[25] | 马永强, 朱海霞. 具有除草活性的生防菌株GD-9发酵条件优化及菌剂制备[J]. 植物保护, 2019, 45(3):88-95. |
Ma YQ, Zhu HX. Optimization of fermentation conditions and preparation of microbial inoculum for biocontrol strain GD-9 with herbicidal activity[J]. Plant Prot, 2019, 45(3):88-95. | |
[26] | 张梦君, 黎继烈, 申爱荣, 等. 亚麻立枯病拮抗菌的筛选、生防效果及发酵条件优化[J]. 微生物学通报, 2017, 44(5):1099-1107. |
Zhang MJ, Li JL, Shen AR, et al. Screening, biocontrol effect and optimization of fermentation conditions of an antagonistic bacteria against Flax[J]. Microbiol China, 2017, 44(5):1099-1107. | |
[27] | 何琼, 李丙雪, 王冬亚, 等. 日本曲霉ZW1发酵滤液的杀线虫活性和发酵条件优化[J]. 中国生物防治学报, 2020, 36(4):619-627. |
He Q, Li BX, Wang DY, et al. Nematicidal activity of Aspergillus japonicus ZW1 fermentation filtrate and optimization of fermentation conditions[J]. Chin J Biol Control, 2020, 36(4):619-627. | |
[28] | 马喆. 根结线虫拮抗放线菌NZ-5菌株的鉴定及其发酵条件优化[J]. 北方园艺, 2019(13):59-67. |
Ma Z. Identification of nematicidal actinomycete NZ-5 and optimization of ferment conditions[J]. North Hortic, 2019(13):59-67. | |
[29] | 高振峰, 张佳. 微白黄链霉素G-1发酵液抗真菌特性研究和发酵条件优化[J]. 生物技术通报, 2021, 37(3):53-64. |
Gao ZF, Zhang J. Study on antifungal properties of fermentation broth from Streptomyces albidoflavus G-1 and optimization of its fermentation condition[J]. Biotechnology Bulletin, 2021, 37(3):53-64. | |
[30] | 张洁, 郭雪萍, 夏明聪, 等. 粉红螺旋聚孢霉NF-06固体发酵条件优化及对南方根结线虫的防治效果[J]. 中国生物防治学报, 2020, 36(1):105-112. |
Zhang J, Guo XP, Xia MC, et al. Optimization of solid state fermentation conditions of Clonostachys rosea NF-06 and its control efficiency on Meloidogyne incognita[J]. Chin J Biol Control, 2020, 36(1):105-112. | |
[31] | 柳皓月, 金辉, 曾黎明, 等. 杀线虫芽孢杆菌发酵条件优化及大孔树脂筛选[J]. 应用生态学报, 2020, 31(7):2287-2292. |
Liu HY, Jin H, Zeng LM, et al. Optimization of the fermentation conditions of Bacillus nematodes and screening of macroporous adsorption resin[J]. Chin J Appl Ecol, 2020, 31(7):2287-2292. | |
[32] | 李社增, 牛露欣, 李博超, 等. 大丽轮枝菌与陆地棉互作过程中棉花次生代谢产物分析[J]. 棉花学报, 2020, 32(6):501-521. |
Li SZ, Niu LX, Li BC, et al. Analysis of cotton secondary metabolites under the interaction between Verticillium dahliae and upland cotton[J]. Cotton Sci, 2020, 32(6):501-521. | |
[33] | 时羽杰, 邬晓勇, 糜加轩, 等. 核桃内种皮苦涩味品质代谢组学分析[J]. 西北农林科技大学学报:自然科学版, 2021, 19(6):1-11. |
Shi YJ, Wu XY, Mi JX, et al. Metabonomics of bitter taste quality of walnut kernel pellicle[J]. Journal of Northwest A & F University:Natural Science Edition, 2021, 19(6):1-11. | |
[34] | 史文思. Myrothecium sp. 和Acremonium terricola两株真菌次级代谢产物的研究[D]. 保定:河北大学, 2016. |
Shi WS. Study on the secondary metabolites from the fungi Myrothecium sp. and Acremonium terricola[D]. Baoding:Hebei University, 2016. | |
[35] |
Murakami Y, Okuda T, Shindo K. Roridin L, M and verrucarin M, new macrocyclic trichothecene group antitumor antibiotics, from Myrothecium verrucaria[J]. J Antibiot, 2001, 54(11):980-983.
pmid: 11827043 |
[36] |
Siciliano I, Bosio P, Gilardi G, et al. Verrucarin A and roridin E produced on spinach by Myrothecium verrucaria under different temperatures and CO2 levels[J]. Mycotoxin Res, 2017, 33(2):139-146.
doi: 10.1007/s12550-017-0273-2 pmid: 28281009 |
[37] |
Feng Y, Holte D, Zoller J, et al. Total synjournal of verruculogen and fumitremorgin A enabled by ligand-controlled C-H borylation[J]. J Am Chem Soc, 2015, 137(32):10160-10163.
doi: 10.1021/jacs.5b07154 pmid: 26256033 |
[38] | 杨洋. 一种新型联苯菊酯的合成及其生物活性评价[D]. 广州:广东工业大学, 2019. |
Yang Y. Synthesis and insecticidal activities of novel bifenthrin pyrethroids[D]. Guangzhou:Guangdong University of Technology, 2019. | |
[39] | 吕莹, 齐艳丽, 任鹏程, 等. 联苯菊酯、噻虫嗪及其代谢物噻虫胺在小麦上的残留及膳食风险评估[J]. 农药学学报, 2021, 23(2):366-372. |
Lv Y, Qi YL, Ren PC, et al. Residue behavior and dietary risk assessment of bifenthrin, thiamethoxam and clothianidin in wheat[J]. Chin J Pestic Sci, 2021, 23(2):366-372. | |
[40] | 马英剑, 钱坤, 徐维, 等. 用于白蚁防治的联苯菊酯微胶囊的制备及性能研究[J/OL]. 环境昆虫学报. http://kns.cnki.net/kcms/detail/44.1640.Q,20201111.1012.html. |
Ma YJ, Qian k, Xu W, et al. Preparation and properties of bifenthrin microcapsules for controlling termite[J/OL]. Journal of Enviiromental Entomology. http://kns.cnki.net/kcms/detail/44.1640.Q,20201111.1012.html. | |
[41] |
Ali N, Azeem S, Khan A, et al. Experimental studies on removal of arsenites from industrial effluents using tridodecylamine supported liquid membrane[J]. Environ Sci Pollut Res, 2020, 27(11):11932-11943.
doi: 10.1007/s11356-020-07619-5 URL |
[1] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[2] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[3] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[4] | 韩少杰, 郑经武. 寄主对大豆孢囊线虫抗性相关基因功能研究进展[J]. 生物技术通报, 2021, 37(7): 14-24. |
[5] | 李春杰, 王从丽. 植物寄生线虫对化感信号的识别及机制[J]. 生物技术通报, 2021, 37(7): 35-44. |
[6] | 王惠, 张顺斌, 金贺, 王晗, 张耕华, 夏诗宁, 陈井生, 段玉玺. 4-香豆酸辅酶A连接酶响应大豆孢囊线虫胁迫的潜在功能[J]. 生物技术通报, 2021, 37(7): 71-80. |
[7] | 周静, 黄文茂, 秦利军, 韩丽珍. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4): 116-126. |
[8] | 徐珊 ,李任强 ,郑振华 ,张云 ,孙爱君 ,胡云峰. 红树林微生物DH-2胞外蛋白酶的性质及产酶条件优化[J]. 生物技术通报, 2018, 34(6): 120-127. |
[9] | 郭珺, 武爱莲, 闫敏, 庞金梅, 焦晓燕. 利用豆制品废水发酵枯萎病拮抗菌Pb-4条件研究[J]. 生物技术通报, 2017, 33(8): 167-173. |
[10] | 刘金辉, 李晓路, 姜岩, 王海宽. 施氏假单胞菌PS59产脂肪酶发酵条件及脂肪酶洗涤性能优化[J]. 生物技术通报, 2016, 32(7): 186-193. |
[11] | 张瑶, 路国兵, 周波, 王冰, 牟志美. 洋葱伯克霍尔德氏菌Lu10-1产脂肪酶发酵条件优化及酶学性质研究[J]. 生物技术通报, 2015, 31(9): 190-196. |
[12] | 王紫娟, 赵敏. 疣孢漆斑菌Myrothecium verrucaria GH-01漆酶的纯化和酶学性质研究[J]. 生物技术通报, 2015, 31(8): 119-124. |
[13] | 李娟,夏凯丽,王远宏,董蕴琪,郝蕾. 解淀粉芽孢杆菌LJ1摇瓶发酵条件优化[J]. 生物技术通报, 2015, 31(12): 214-220. |
[14] | 张谦,贾佳,林智,杨晓锋,郭宏涛,王剑英,Carol Sze Ki Lin. 产脂肪酶黑曲霉摇瓶发酵条件优化研究[J]. 生物技术通报, 2015, 31(12): 227-233. |
[15] | 叶婧;刘雪;张丽;于江;朱昌雄;. 蔗渣发酵菌剂培养基的筛选及发酵条件的优化[J]. , 2009, 0(11): 168-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||