生物技术通报 ›› 2021, Vol. 37 ›› Issue (7): 137-145.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0010
刘娟(), 朱春晓, 肖雪琼, 莫陈汨, 王高峰(), 肖炎农()
收稿日期:
2021-01-04
出版日期:
2021-07-26
发布日期:
2021-08-13
作者简介:
刘娟,女,硕士研究生,研究方向:分子植物病理学;E-mail: 基金资助:
LIU Juan(), ZHU Chun-xiao, XIAO Xue-qiong, MO Chen-mi, WANG Gao-feng(), XIAO Yan-nong()
Received:
2021-01-04
Published:
2021-07-26
Online:
2021-08-13
摘要:
以淡紫紫孢菌中参与盐胁迫响应的亲环蛋白PlCYP6 为研究对象,采用免疫沉淀联合质谱分析及酵母双杂交等技术筛选淡紫紫孢菌中与PlCYP6 互作的蛋白。结果显示,受PlCYP6 特异钓取的482 个蛋白的功能主要涉及细胞代谢。其中,乙醇脱氢酶1(alcohol dehydrogenase I,ADH1)与PlCYP6 直接互作,且PlCYP6 的WD40 repeat 结构域为二者间互作的关键区域。同时,PlCYP6 和ADH1 均受NaCl 胁迫诱导表达。上述研究结果表明,ADH1 为PlCYP6 的候选互作蛋白,这为进一步解析淡紫紫孢菌响应盐胁迫机制奠定了基础。
刘娟, 朱春晓, 肖雪琼, 莫陈汨, 王高峰, 肖炎农. 淡紫紫孢菌亲环蛋白PlCYP6 互作蛋白的筛选[J]. 生物技术通报, 2021, 37(7): 137-145.
LIU Juan, ZHU Chun-xiao, XIAO Xue-qiong, MO Chen-mi, WANG Gao-feng, XIAO Yan-nong. Screening of Protein Interacting with Purpureocillium lilacinum Cyclophilin PlCYP6[J]. Biotechnology Bulletin, 2021, 37(7): 137-145.
图1 eGFP及PlCYP6∷eGFP在淡紫紫孢菌中的异源表达 A:使用共聚焦显微镜观察淡紫紫孢菌野生型(WT),以及菌株Pl-G(异源表达eGFP)和Pl-GCYP6(异源表达PlCYP6∷eGFP)的eGFP 绿色荧光信号;B:使用PCR 扩增eGFP(约1 000 bp)和PlCYP6∷eGFP(约3 000 bp);泳道M 为DNA marker,泳道1 为WT,泳道2 和泳道3 为菌株Pl-G,泳道4 和泳道5 为菌株Pl-GCYP6;C:对淡紫紫孢菌各菌株总蛋白中的eGFP 或PlCYP6∷eGFP 进行Western blot 检测;其中,使用eGFP-anti 作为一抗,羊抗鼠IgG 作为二抗;泳道M 为Precision Plus ProteinTM Standards,泳道1 为WT 总蛋白质,泳道2 和泳道3 为菌株Pl-G 总蛋白质,泳道4 和泳道5 为菌株Pl-GCYP6 总蛋白质
Fig. 1 Heterologous expressions of eGFP and PlCYP6∷eGFP in P. lilacinum A:Observation of the eGFP green fluorescence signal of P. lilacinum(WT),strains Pl-G(heterologous expression of eGFP)and Pl-GCYP6(heterologous expression of PlCYP6∷eGFP)by confocal microscope. B:Amplification of eGFP(about 1 000 bp)and PlCYP6∷eGFP(about 3 000 bp)by PCR,lane M is a DNA marker;lane 1 is WT;lane 2 and lane 3 are strain Pl-G;lane 4 and lane 5 are the strain Pl-GCYP6. C:Detection of eGFP or PlCYP6∷eGFP in the total protein of P. lilacinum by Western blot. Among them,using eGFP-anti as the primary antibody and goat anti-mouse IgG as the secondary antibody;lane M is Precision Plus ProteinTM Standards,lane 1 is the total protein of WT;lane 2 and lane 3 are the total protein of strain Pl-G;lane 4 and lane 5 are the total protein of strain Pl-GCYP6
图2 免疫沉淀钓取PlCYP6互作蛋白 A:使用SDS-PAGE 凝胶电泳检测蛋白,M 为Precision Plus ProteinTM Standards,1 号及2 号泳道为Pl-G 菌株(异源表达eGFP)及Pl-GCYP6 菌株(异源表达PlCYP6∷eGFP)经过1 mol/L NaCl 处理0 min,15 min,30 min 和60 min 后提取的总蛋白,3 号及4 号泳道为总蛋白进行免疫沉淀后的洗脱产物,5 号及6 号泳道为免疫沉淀后去除非特异性蛋白时第一次清洗的上清液;B:使用Western blot 杂交免疫沉淀后的洗脱产物,Input 为总蛋白质溶液,使用eGFP-anti 作为一抗,羊抗鼠IgG 作为二抗。+ 代表含有,- 代表不含有
Fig. 2 Immunoprecipitation to catch interacting proteins of PlCYP6 A:Detection of proteins by SDS-PAGE gel electrophoresis;M is Precision Plus ProteinTM Standards;lane 1 and lane 2 are the extracted total protein of Pl-G strain(heterologous expression of eGFP)and Pl-GCYP6 strain(heterologous expression of PlCYP6∷eGFP)after treatment with 1 mol/L NaCl for 0,15,30 and 60 min;lane 3 and lane 4 are the eluted products of total protein after immunoprecipitation;lane 5 and lane 6 are supernatant that washed for the first time when non-specific proteins were removed after immunoprecipitation. B:Western blot was used to hybridize the eluted product after immunoprecipitation;Input was the total protein solution;eGFP-anti as the primary antibody and goat anti-mouse IgG as the secondary antibody;“+” indicates containing and “-” indicates not containing
图3 差异蛋白的分布 对照组:Pl-G 菌株(异源表达eGFP),处理组:Pl-GCYP6 菌株(异源表达PlCYP6∷eGFP)。对照组和处理组免疫沉淀后的蛋白液经LC-MS/MS 分析后,分别鉴定蛋白质的数量和种类,数据库为UniProt 及基于基因组注释的蛋白数据库。与对照组相比,选择处理组中的特异蛋白为候选互作蛋白(482 个)
Fig. 3 Distribution of differential proteins Control group:Pl-G strain(heterologous expression of eGFP). Treatment group:Pl-GCYP6 strain(heterologous expression of PlCYP6∷eGFP). The protein solution after immunoprecipitation in the control group and the treatment group was analyzed by LC-MS/MS to identify the number and types of proteins respectively. The databases are UniProt and the protein databases based on genome annotation. Compared with the control group,the specific proteins in the treatment group were selected as candidate interacting proteins(482)
图4 候选互作蛋白的GO 功能注释及KEGG pathway 分析 基于GO 数据库及KEGG pathway 数据库对候选互作蛋白(482 个)进行蛋白功能注释,横坐标为蛋白数量,纵坐标为分类条目
Fig. 4 GO function annotation and KEGG pathway analysis of candidate interacting proteins Based on the GO database and the KEGG pathway database,the candidate interacting proteins(482)are annotated with protein function. The abscissa is the number of proteins,and the ordinate is the classification item
图5 酵母双杂交验证PlCYP6与ADH1蛋白的互作关系 A:依据PlCYP6 蛋白结构域进行截短分析原理图,WD40 repeat 及Cyclophilin-like 为PlCYP6 的预测蛋白结构域;B:酵母双杂交自激活验证;C:PlCYP6 及不同分段区域与ADH1 的酵母双杂交结果。BD:PGBKT7,AD:PGADT7-7。+ 代表AD 或BD 空载体。酵母可以在DDO 培养基(二缺培养基)上生长表示目标载体成功转化入酵母体内,酵母可以在QDO/X/A 培养基(四缺培养基)上生长表示目标蛋白之间存在直接互作关系
Fig. 5 Interaction relationship between PlCYP6 and ADH1 protein by yeast two-hybrid A:Principle diagram of truncation analysis based on PlCYP6 protein domain, WD40 repeat and Cyclophilin-like are the predicted protein domains of PlCYP6. B:Yeast two-hybrid self-activation verification. C:Yeast twohybrid results between PlCYP6 and different segmented regions with ADH1. BD:PGBKT7;AD:PGADT7-7;“+” refers to AD or BD empty carrier. If yeast grew on DDO medium(two-deficient medium),the target vectors have been successfully transformed into the yeast. If yeast grew on QDO/X/A medium(four-deficient medium),there will be direct interaction relationship between target proteins
图6 PlCYP6 与ADH1 在盐胁迫中的基因表达量分析 将野生型淡紫紫孢菌使用无菌水(Mock)和1 mol/L NaCl 处理60 min 后提取RNA,使用Actin 作为内参,测量PlCYP6 与ADH1 的基因表达量,使用t 检验进行样本间显著性差异分析,***表示P<0.001
Fig. 6 Analysis of the gene expression levels of PlCYP6 and ADH1 under salt stress The wild-type P.lilacinum was treated with sterile water(Mock)and 1 mol/L NaCl for 60 min,and then the RNA was extracted. Actin was used as an internal control to measure the gene expression levels of PlCYP6 and ADH1. The t test was used to determine significant differences between samples. “***” refers to P<0.001
[1] |
Zhang L, Yu GX, Xia DW, et al. Protein-protein interactions prediction based on ensemble deep neural networks[J]. Neurocomputing, 2019, 324:10-19.
doi: 10.1016/j.neucom.2018.02.097 |
[2] | Rao VS, Srinivas K, Sujini GN, et al. Protein-protein interaction detection:methods and analysis[J]. Int J Proteomics, 2014, 2014:147648. |
[3] |
Huang BX, Kim HY. Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry[J]. PLoS One, 2013, 8(4):e61430.
doi: 10.1371/journal.pone.0061430 URL |
[4] |
Li Y, Collins M, An J, et al. Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein-protein interaction network[J]. Brain Res, 2016, 1647:79-93.
doi: 10.1016/j.brainres.2016.02.047 URL |
[5] |
Phee BK, Shin DH, Cho JH, et al. Identification of phytochrome-interacting protein candidates in Arabidopsis thaliana by co-immunoprecipitation coupled with MALDI-TOF MS[J]. Proteomics, 2006, 6(12):3671-3680.
doi: 10.1002/(ISSN)1615-9861 URL |
[6] | 李耀东, 关振宏, 严景华. 免疫共沉淀筛选细胞内与A型流感病毒M2蛋白相互作用的蛋白[J]. 微生物学报, 2009, 49(8):1081-1085. |
Li YD, Guan ZH, Yan JH. Screening cellular proteins interacted with M2 protein of influenza A virus by Coimmunoprecipitation[J]. Acta Microbiol Sin, 2009, 49(8):1081-1085. | |
[7] | 岳金荣, 丛玉婷, 邢震宇, 等. 利用免疫共沉淀联合质谱技术筛选盐藻MAPK的互作蛋白[J]. 核农学报, 2020, 34(6):1187-1195. |
Yue JR, Cong YT, Xing ZY, et al. Detection proteins interacting with Dunaliella salina MAPK by co-immunoprecipitation and mass spectrometry[J]. J Nucl Agric Sci, 2020, 34(6):1187-1195. | |
[8] |
Camilloni C, Sahakyan AB, Holliday MJ, et al. Cyclophilin A catalyzes proline isomerization by an electrostatic handle mechanism[J]. Proc Natl Acad Sci USA, 2014, 111(28):10203-10208.
doi: 10.1073/pnas.1404220111 URL |
[9] |
Mukherjee D, Patra H, Laskar A, et al. Cyclophilin-mediated reactivation pathway of inactive adenosine kinase aggregates[J]. Arch Biochem Biophys, 2013, 537(1):82-90.
doi: 10.1016/j.abb.2013.06.018 pmid: 23831509 |
[10] |
Vasudevan D, Fu AG, Luan S, et al. Crystal structure of Arabidopsis Cyclophilin reveals a previously uncharacterized immunophilin fold and a possible autoinhibitory mechanism[J]. Plant Cell, 2012, 24(6):2666-2674.
doi: 10.1105/tpc.111.093781 URL |
[11] |
Horowitz DS, Lee EJ, Mabon SA, et al. A cyclophilin functions in pre-mRNA splicing[J]. EMBO J, 2002, 21(3):470-480.
pmid: 11823439 |
[12] |
Li H, Luan S. The cyclophilin AtCYP71 interacts with CAF-1 and LHP1 and functions in multiple chromatin remodeling processes[J]. Mol Plant, 2011, 4(4):748-758.
doi: 10.1093/mp/ssr036 URL |
[13] |
Li H, He Z, Lu G, et al. A WD40 domain cyclophilin interacts with histone H3 and functions in gene repression and organogenesis in Arabidopsis[J]. Plant Cell, 2007, 19(8):2403-2416.
doi: 10.1105/tpc.107.053579 URL |
[14] | Hanes SD. Prolyl isomerases in gene transcription[J]. Biochim Biophys Acta, 2015, 1850(10):2017-2034. |
[15] |
Yurchenko V, O’Connor M, Dai WW, et al. CD147 is a signaling receptor for cyclophilin B[J]. Biochem Biophys Res Commun, 2001, 288(4):786-788.
doi: 10.1006/bbrc.2001.5847 URL |
[16] |
Brazin KN, Mallis RJ, Fulton DB, et al. Regulation of the tyrosine kinase Itk by the peptidyl-prolyl isomerase cyclophilin A[J]. Proc Natl Acad Sci USA, 2002, 99(4):1899-1904.
doi: 10.1073/pnas.042529199 URL |
[17] | Mo CM, Xie C, Wang GF, et al. Genome-wide identification and characterization of the cyclophilin gene family in the nematophagous fungus Purpureocillium lilacinum[J]. Int J Mol Sci, 2019, 20(12):E2978. |
[18] |
Luangsa-Ard J, Houbraken J, van Doorn T, et al. Purpureocillium, a new genus for the medically important Paecilomyces lilacinus[J]. FEMS Microbiol Lett, 2011, 321(2):141-149.
doi: 10.1111/j.1574-6968.2011.02322.x pmid: 21631575 |
[19] |
Giné A, Sorribas FJ. Effect of plant resistance and BioAct WG(Purpureocillium lilacinum strain 251)on Meloidogyne incognita in a tomato-cucumber rotation in a greenhouse[J]. Pest Manag Sci, 2017, 73(5):880-887.
doi: 10.1002/ps.2017.73.issue-5 URL |
[20] |
Wilson MJ, Jackson TA. Progress in the commercialisation of bionematicides[J]. BioControl, 2013, 58(6):715-722.
doi: 10.1007/s10526-013-9511-5 URL |
[21] | 刘晓艳, 闵勇, 饶犇 等. 杀线虫剂产品研究进展[J]. 中国生物防治学报, 2021, 1-7. |
Liu XY, Min Y, Rao B, et al. Research Advances on the Nematocides[J]. Chinese Journal of Biological Control, 2021, 1-7. | |
[22] |
Marian M, Shimizu M. Improving performance of microbial biocontrol agents against plant diseases[J]. J Gen Plant Pathol, 2019, 85(5):329-336.
doi: 10.1007/s10327-019-00866-6 |
[23] |
Liang LQ, Li JQ, Cheng L, et al. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum[J]. Microbiol Res, 2014, 169(11):835-843.
doi: 10.1016/j.micres.2014.03.004 URL |
[24] |
Braun P, Gingras AC. History of protein-protein interactions:from egg-white to complex networks[J]. Proteomics, 2012, 12(10):1478-1498.
doi: 10.1002/pmic.201100563 URL |
[25] |
De Rybel B, Möller B, Yoshida S, et al. A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis[J]. Dev Cell, 2013, 24(4):426-437.
doi: 10.1016/j.devcel.2012.12.013 pmid: 23415953 |
[26] |
Saiga S, Möller B, Watanabe-Taneda A, et al. Control of embryonic meristem initiation in Arabidopsis by PHD-finger protein complexes[J]. Development, 2012, 139(8):1391-1398.
doi: 10.1242/dev.074492 URL |
[27] |
Casey JL, Coley AM, Tilley LM, et al. Green fluorescent antibodies:novel in vitro tools[J]. Protein Eng, 2000, 13(6):445-452.
pmid: 10877856 |
[28] |
Ethier M, Lambert JP, Vasilescu J, et al. Analysis of protein interaction networks using mass spectrometry compatible techniques[J]. Anal Chimica Acta, 2006, 564(1):10-18.
doi: 10.1016/j.aca.2005.12.046 URL |
[29] |
Rangel DEN. Stress induced cross-protection against environmental challenges on prokaryotic and eukaryotic microbes[J]. World J Microbiol Biotechnol, 2011, 27(6):1281-1296.
doi: 10.1007/s11274-010-0584-3 URL |
[30] |
Hou Q, Bartels D. Comparative study of the aldehyde dehydrogenase(ALDH)gene superfamily in the glycophyte Arabidopsis thaliana and Eutrema halophytes[J]. Ann Bot, 2015, 115(3):465-479.
doi: 10.1093/aob/mcu152 URL |
[31] |
Rangel-Porras RA, Meza-Carmen V, Martinez-Cadena G, et al. Molecular analysis of an NAD-dependent alcohol dehydrogenase from the zygomycete Mucor circinelloides[J]. Mol Genet Genomics, 2005, 274(4):354-363.
pmid: 16179992 |
[32] |
Yi SY, Ku SS, Sim HJ, et al. An alcohol dehydrogenase gene from Synechocystis sp. confers salt tolerance in transgenic tobacco[J]. Front Plant Sci, 2017, 8:1965.
doi: 10.3389/fpls.2017.01965 URL |
[33] |
Smith TF, Gaitatzes C, Saxena K, et al. The WD repeat:a common architecture for diverse functions[J]. Trends Biochem Sci, 1999, 24(5):181-185.
pmid: 10322433 |
[34] |
Jain BP, Pandey S. WD40 repeat proteins:signalling scaffold with diverse functions[J]. Protein J, 2018, 37(5):391-406.
doi: 10.1007/s10930-018-9785-7 URL |
[35] |
Schuetz A, Allali-Hassani A, Martín F, et al. Structural basis for molecular recognition and presentation of histone H3 by WDR5[J]. EMBO J, 2006, 25(18):4245-4252.
pmid: 16946699 |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[3] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[4] | 蔡佳, 梁振宇, 黄瑜, 鲁义善, 施钢, 简纪常. 利用酵母双杂交系统筛选与鉴定石斑鱼EcBAG3互作因子[J]. 生物技术通报, 2022, 38(8): 77-83. |
[5] | 武玉环, 彭焕, 葛逢勇, 彭德良, 刘大群, 李亚宁. 5株生防真菌对孢囊线虫的杀线活性测定[J]. 生物技术通报, 2022, 38(11): 220-226. |
[6] | 杨华杰, 周玉萍, 范甜, 吕天晓, 谢楚萍, 田长恩. 拟南芥IQM4互作蛋白的筛选和鉴定[J]. 生物技术通报, 2021, 37(11): 190-196. |
[7] | 郝小花, 戴佳利, 暨文劲, 黄丹, 李东屏, 田连福. 水稻籽粒低镉蛋白LCD互作蛋白的筛选与鉴定[J]. 生物技术通报, 2020, 36(11): 21-29. |
[8] | 钟李婷, 陈秀珍, 唐云, 李俊仁, 王小兵, 刘彦婷, 周璇璇, 詹若挺, 陈立凯. 广藿香FPPS重组蛋白表达及互作蛋白筛选分析[J]. 生物技术通报, 2019, 35(12): 10-15. |
[9] | 贾建磊, 陈倩, 靳继鹏, 袁赞, 张利平. 绵羊BMPR1B基因真核表达及产物互作蛋白的鉴定[J]. 生物技术通报, 2019, 35(12): 94-104. |
[10] | 李书鹏, 杨秀芬, 袁京京, 邱德文. 蛋白激发子Hrip1互作蛋白的筛选及其原核表达[J]. 生物技术通报, 2017, 33(6): 182-189. |
[11] | 唐小丽, 伍文宪, 韩磊, 杨秀芬. 真菌蛋白激发子PevD1互作蛋白的酵母双杂交筛选及融合蛋白的原核表达[J]. 生物技术通报, 2014, 0(10): 113-118. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||