生物技术通报 ›› 2021, Vol. 37 ›› Issue (8): 233-242.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1473
收稿日期:
2020-12-02
出版日期:
2021-08-26
发布日期:
2021-09-10
作者简介:
段绪果,男,博士,副教授,研究方向:酶工程;E-mail: 基金资助:
DUAN Xu-guo(), ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu
Received:
2020-12-02
Published:
2021-08-26
Online:
2021-09-10
摘要:
为实现海栖热袍菌Thermotoga maritime α-葡聚糖磷酸化酶的高效制备。构建了产α-葡聚糖磷酸化酶重组菌株,并对发酵条件进行了优化。初步研究发现,重组菌株在37℃条件下进行诱导培养,摇瓶发酵24 h,酶活力仅有5.2 U/mL;SDS-PAGE蛋白电泳显示,重组酶主要以不可溶的包涵体状态存在,可溶性酶所占比例偏低。为减少包涵体的形成、提高重组酶可溶性表达水平,分别从诱导条件和分子伴侣两个方面进行了优化。首先,通过对诱导剂种类、诱导剂浓度、温度、诱导剂添加时间等诱导条件进行优化后,α-葡聚糖磷酸化酶的酶活力提高到27.0 U/mL,是优化前的5.2倍。其次,通过添加化学分子伴侣进一步提高重组酶可溶性表达水平,发现在发酵0 h添加20 mmol/L的化学分子伴侣(肌醇)后,最高酶活力为62.0 U/mL,是优化前酶活力的11.9倍;然而,共表达5种分子伴侣质粒pG-KJE8、pGro7、pKJE7、pG-Tf2和pTf16对α-葡聚糖磷酸化酶的可溶性表达均没有促进作用。
段绪果, 张玉华, 黄婷婷, 丁乾, 栾舒越, 朱秋雨. 化学分子伴侣及诱导条件协同强化Thermotoga maritima α-葡聚糖磷酸化酶可溶性表达[J]. 生物技术通报, 2021, 37(8): 233-242.
DUAN Xu-guo, ZHANG Yu-hua, HUANG Ting-ting, DING Qian, LUAN Shu-yue, ZHU Qiu-yu. Synergetic Enhancing the Soluble Expression of Thermotoga maritima α-Glucan Phosphorylase by Chemical Chaperones and Induction Condition Optimization[J]. Biotechnology Bulletin, 2021, 37(8): 233-242.
图1 重组菌株及对照菌株发酵产α-葡聚糖磷酸化酶SDS-PAGE电泳图 M:分子量标准;1:重组菌株细胞可溶性组分;2:重组菌株细胞非可溶组分;3:对照菌株细胞非可溶组分;4:重组菌株细胞可溶性组分
Fig. 1 SDS-PAGE analysis of α-glucan phosphorylase pro-duced by the recombinant strains and the control strain M: protein standard; 1: soluble fraction of recombinant strain; 2: insoluble fraction of recombinant strain; 3: soluble fraction of the control strain; 4: insoluble fraction of the control strain
图2 乳糖浓度对重组菌生长、产酶的影响(A)和细胞破碎上清SDS-PAGE电泳图(B)
Fig. 2 Effect of lactose concentration on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
图3 IPTG浓度对重组菌生长、产酶的影响(A)和细胞破碎上清SDS-PAGE电泳图(B)
Fig. 3 Effect of IPTG concentration on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
图4 诱导温度对重组菌生长、产酶的影响(A)和细胞破碎上清SDS-PAGE电泳图(B)
Fig. 4 Effect of induction temperature on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
图5 诱导剂添加时间对重组菌生长、产酶的影响(A)和细胞破碎上清SDS-PAGE电泳图(B)
Fig. 5 Effect of adding inducer at different times on the recombinant strain growth and enzyme production (A) and the SDS-PAGE analysis of cell disruption supernatant of the recombinant strain (B)
图6 化学分子伴侣种类(A)及肌醇浓度(B)对重组菌生长、产酶的影响 空白:blank;2- 苯乙醇:2- phenyl ethanol;甘氨酸:glycine;海藻糖:trehalose;苯甲醇:phemethylol;甜菜碱:betaine;L- 脯氨酸:L- proline;氧化三甲胺:trimethyl aminoxide(TMAO);肌醇:inositol
Fig. 6 Effect of different chemical chaperone (A) and inositol concentration (B) on the recombinant strain growth and enzyme production
[1] |
Ye XH, Rollin J, Zhang YH. Thermophilic α-glucan phosphorylase from Clostridium thermocellum cloning, characterization and enhanced thermostability[J]. Journal of Molecular Catalysis B:Enzymatic, 2010, 65:110-116.
doi: 10.1016/j.molcatb.2010.01.015 URL |
[2] | 董晨, 胡会刚, 贾利强, 等. 香蕉α-1, 4-葡聚糖淀粉磷酸化酶基因家族全基因组鉴定与进化分析[J]. 湖北农业科学, 2016, 55(12):3200-3204. |
Dong C, Hu HG, Jia LQ, et al. Genome-wide identification and phylogenetic analysis of α-1, 4-glucan starch phosphorylase gene family of banana[J]. Hubei Agricultural Sciences, 2016, 55(12):3200-3204. | |
[3] |
Nidetzky B, Weinhausel A, Haltrich D, et al. Maltodextrin phosphorylase from Escherichia coli:production and application for the synjournal of alpha-glucose-1-phosphate[J]. Annals of the New York Academy of Sciences, 1996, 782:208-218.
pmid: 8659898 |
[4] |
Bae J, Lee D, Kim D, et al. Facile synjournal of glucose-1-phosphate from starch by Thermus caldophilus GK24 alpha-glucan phosphorylase[J]. Process Biochemistry, 2005, 40(12):3707-3713.
doi: 10.1016/j.procbio.2005.05.007 URL |
[5] | You C, Chen HG, Myung S, et al. Enzymatic transformation of nonfood biomass to starch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(18):7182-7187. |
[6] | 李恬, 周星, 徐进, 徐学明, 等. 以蔗糖为底物双酶法合成直链糊精[J]. 食品与发酵工业, 2012, 38(10):29-34. |
Li T, Zhou X, Xu J, et al. Enzymatic synjournal of amylodextrin from sucrose[J]. Food and Fermentation Industries, 2012, 38(10):29-34. | |
[7] |
Takata Y, Yamamoto K, Kadokawa J. Preparation of pH-responsive amphoteric glycogen hydrogels by α-glucan phosphorylase-catalyzed successive enzymatic reactions[J]. Macromolecular Chemistry and Physics, 2015, 216(13):1415-1420.
doi: 10.1002/macp.201500151 URL |
[8] |
Nakai H, Kitaoka M, Svensson B, et al. Recent development of phosphorylases possessing large potential for oligosaccharide synjournal[J]. Current Opinion in Chemical Biology, 2013, 17(2):301-309.
doi: 10.1016/j.cbpa.2013.01.006 URL |
[9] | 陈世琼. 一种高温细菌葡聚糖磷酸化酶基因的克隆与表达[J]. 食品与发酵工业, 2009, 35(7):40-43. |
Chen SQ. Clone and overexpression of a novel thermostable glucan phosphorylase from a thermophilic bacterium[J]. Food and Fermentation Industries, 2009, 35(7):40-43. | |
[10] |
Mizanur RM, Griffin AK, Pohl NL. Recombinant production and biochemical characterization of a hyperthermostable alpha-glucan/maltodextrin phosphorylase from Pyrococcus furiosus[J]. Archaea, 2008, 2(3):169-176.
pmid: 19054743 |
[11] |
Zhou W, You C, Ma H, et al. One-pot biosynjournal of high-concentration α-glucose 1-phosphate from starch by sequential addition of three hyperthermophilic enzymes[J]. Journal of Agricultural and Food Chemistry, 2016, 64(8):1777-1783.
doi: 10.1021/acs.jafc.5b05648 pmid: 26832825 |
[12] | 张尧, 吴绵斌, 杨立荣, 等. 重组Pyrococcus furiosus葡聚糖磷酸化酶催化淀粉合成葡萄糖-1-磷酸[J]. 高校化学工程学报, 2016, 30(2):417-422. |
Zhang Y, Wu MB, Yang LR, et al. Synjournal of glucose-1-phosphate from starch by Pyrococcus furiosus glucan phosphorylase[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(2):417-422. | |
[13] |
Diamant S, Eliahu N, Rosenthal D, et al. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses[J]. Journal of Biological Chemistry, 2001, 276:39586-39591.
pmid: 11517217 |
[14] |
Jhamb K, Sahoo DK. Production of soluble recombinant proteins in Escherichia coli:effects of process conditions and chaperone co-expression on cell growth and production of xylanase[J]. Bioresource Technology, 2012, 123:135-143.
doi: 10.1016/j.biortech.2012.07.011 URL |
[15] |
Duan XG, Zhang XY, Shen ZY, et al. Efficient production of aggregation prone 4-α-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli[J]. Journal of Biotechnology, 2019, 292:68-75.
doi: 10.1016/j.jbiotec.2019.01.014 URL |
[16] | 许蕊, 张昕怡, 潘悦, 等. 来源于解酯菌的嗜热耐碱脂肪酶的表达纯化及其酶学性质研究[J]. 林业工程学报, 2020, 5(3):108-114. |
Xu R, Zhang XY, Pan Y, et al. Expression, purification and characterization of lipase from Thermosyntropha lipolytica[J]. Journal of Forestry Engineering, 2020, 5(3):108-114. | |
[17] | 夏美娟, 宦才辉, 姜婷, 等. 凝结芽孢杆菌N-乙酰-β-D-氨基葡萄糖苷酶基因的克隆鉴定及酶学性质[J]. 林业工程学报, 2017, 2(2):70-75. |
Xia MJ, Huan CH, Jiang T, et al. Molecular cloning and enzymological characteristics of a novel N-acetyl-β-D-glucosaminidase from Bacillus coagulans[J]. Journal of Forestry Engineering, 2017, 2(2):70-75. | |
[18] |
Garcia-Fruitos E, Aris A, Villaverde A. Localization of functional polypeptides in bacterial inclusion bodies[J]. Applied and Environmental Microbiology, 2007, 73(1):289-294.
doi: 10.1128/AEM.01952-06 URL |
[19] |
De Marco A, Vigh L, Diamant S, et al. Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid-or benzyl alcohol-overexpressed molecular chaperones[J]. Cell Stress Chaperon, 2005, 10(4):329-339.
pmid: 16333986 |
[20] |
Ignatova Z, Gierasch LM. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(36):13357-13361.
pmid: 16899544 |
[21] |
Unzueta U, Vazquez F, Accardi G, et al. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories:production of human alpha-galactosidase A[J]. Applied Microbiology and Biotechnology, 2015, 99(14):5863-5874.
doi: 10.1007/s00253-014-6328-9 pmid: 25616525 |
[22] |
Butt TR, Edavettal SC, Hall JP, et al. SUMO fusion technology for difficult-to-express proteins[J]. Protein Expression and Purification, 2005, 43(1):1-9.
doi: 10.1016/j.pep.2005.03.016 URL |
[23] |
Lu W, Cai X, Gu Z, et al. Production and characterization of hirudin variant-1 by SUMO fusion technology in E. coli[J]. Molecular Biotechnology, 2013, 53(1):41-8.
doi: 10.1007/s12033-012-9511-1 URL |
[24] |
Ojima-Kato T, Nagai S, Nakano H. N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2017, 123(5):540-546.
doi: S1389-1723(16)30635-1 pmid: 28052816 |
[25] |
Tileva M, Krachmarova E, Ivanov I, et al. Production of aggregation prone human interferon gamma and its mutant in highly soluble and biologically active form by SUMO fusion technology[J]. Protein Expression and Purification, 2016, 117:26-34.
doi: 10.1016/j.pep.2015.09.022 pmid: 26407523 |
[26] |
Hussain H, Fisher DI, Abbott WM, et al. Use of a protein engineering strategy to overcome limitations in the production of “difficult to express” recombinant proteins[J]. Biotechnology and Bioengineering, 2017, 114(10):2348-2359.
doi: 10.1002/bit.26358 pmid: 28627739 |
[27] |
Wang T, Badran AH, Huang TP, et al. Continuous directed evolution of proteins with improved soluble expression[J]. Nature Chemical Biology, 2018, 14(10):972-980.
doi: 10.1038/s41589-018-0121-5 |
[28] |
Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules[J]. Nature, 2011, 472(7344):499-503.
doi: 10.1038/nature09929 URL |
[29] |
Duan XG, Chen J, Wu J. Optimization of pullulanase production in Escherichia coli by regulation of process conditions and supplement with natural osmolytes[J]. Bioresource Technology, 2013, 146:379-385.
doi: 10.1016/j.biortech.2013.07.074 URL |
[30] |
Zou C, Duan XG, Wu J. Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy[J]. Bioresource Technology, 2014, 172:174-179.
doi: 10.1016/j.biortech.2014.09.035 URL |
[1] | 梅欢, 李玥, 刘可蒙, 刘吉华. 小檗碱桥酶高效原核表达及生物合成l-SLR的研究[J]. 生物技术通报, 2023, 39(7): 277-287. |
[2] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[3] | 常晴, 束月蓉, 王文韬, 蒋昊, 延泉德, 钱政, 高雪纯, 吴金鸿, 张勇. 来自Yeosuana marina sp. JLT21内切型海藻酸裂解酶的异源表达及酶学表征[J]. 生物技术通报, 2022, 38(2): 123-131. |
[4] | 赵宝顶, 吕佳, 申玉玉, 桂玲, 陈钟秀, 陈杰, 路福平, 黎明. 基于信号肽和分子伴侣策略促进大肠杆菌高效转化尿苷[J]. 生物技术通报, 2022, 38(11): 238-249. |
[5] | 曹汝菲, 李泽轩, 许欢, 张莎, 张敏敏, 戴枫, 段晓雷. 脆弱拟杆菌Pif1解旋酶的表达纯化与晶体生长[J]. 生物技术通报, 2021, 37(9): 180-190. |
[6] | 贺小丽, 郭磊周, 韩佳慧, 唐殷, 袁媛, 代其林, 平淑珍, 江世杰. 细菌周质分子伴侣LolA研究进展[J]. 生物技术通报, 2021, 37(8): 275-283. |
[7] | 赵震, 王莎莎, 吕星星, 陶妍, 谢晶, 钱韻芳. 重组毕赤酵母产青蛤Mytimacin抗菌肽的表达研究[J]. 生物技术通报, 2020, 36(5): 150-158. |
[8] | 闵琪, 高子涵, 姚银, 张华山, 熊海容, 张莉. 共表达HAC1和分子伴侣基因对甘露聚糖酶在毕赤酵母中表达的影响[J]. 生物技术通报, 2020, 36(5): 159-168. |
[9] | 高云山, 刘丹丹, 徐俊林, 桑雨浓, 梁夏夏, 刘建欣, 王文彬. 嗜水气单胞菌孔蛋白OmpF重组表达及其免疫原性 分析[J]. 生物技术通报, 2019, 35(9): 234-243. |
[10] | 张亚莉, 陶妍, 谢晶, 钱韻芳. 厚壳贻贝Mytilin-1成熟肽在毕赤酵母中的重组表达及其抑菌活性[J]. 生物技术通报, 2019, 35(7): 54-60. |
[11] | 高庆华, 董聪, 王玥, 胡美荣, 王庆庆, 王云鹏, 罗同阳, 刘蕾. 共表达分子伴侣PDI和Ero1对葡萄糖氧化酶在毕赤酵母中表达的影响[J]. 生物技术通报, 2018, 34(7): 174-179. |
[12] | 杨何宝 ,胡美荣 ,郑翔 ,牟庆璇 ,高沛汝. 不同信号肽及分子伴侣对中性蛋白酶在枯草芽孢杆菌中分泌表达的影响[J]. 生物技术通报, 2018, 34(6): 134-140. |
[13] | 张亨, 刘盈盈, 陈云, 平淑珍, 王劲. 戈壁异常球菌Dgl5蛋白生物学功能研究[J]. 生物技术通报, 2018, 34(3): 177-184. |
[14] | 韩唱,宿玲恰,吴敬. Sulfolobus acidocaldarius ATCC 33909麦芽寡糖基海藻糖合成酶在Bacillus subtilis中的重组表达和发酵优化[J]. 生物技术通报, 2017, 33(7): 162-168. |
[15] | 于林港, 宿玲恰, 吴敬. Escherichia coli str. K-12 substr. MG1655海藻糖酶Tre F的重组表达及性质研究[J]. 生物技术通报, 2017, 33(4): 177-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||