生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 226-233.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1460
刘晓艺1(), 羊健2, 刘敬1, 王冰1, 戴良英1(), 李魏1()
收稿日期:
2020-11-28
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
刘晓艺,女,硕士研究生,研究方向:分子植物病理学;E-mail: 基金资助:
LIU Xiao-yi1(), YANG Jian2, LIU Jing1, WANG Bing1, DAI Liang-ying1(), LI Wei1()
Received:
2020-11-28
Published:
2021-09-26
Online:
2021-10-25
摘要:
热激转录因子作为植物体内广泛存在的一类转录因子,能够响应多种非生物胁迫。位于胁迫响应末端的热激转录因子通过结合热激元件,从而和其他转录因子聚集共同形成复合体来调控热激蛋白的表达,从而参与调控植物抵抗逆境胁迫的反应。就水稻热激转录因子的典型结构、在调控水稻非生物胁迫和生物胁迫中的功能与作用机制以及在水稻体内的其他功能进行了综述,以期为进一步解析热激转录因子功能与机制及其在水稻抗病抗逆分子育种上的应用提供参考。
刘晓艺, 羊健, 刘敬, 王冰, 戴良英, 李魏. 水稻热激转录因子研究进展[J]. 生物技术通报, 2021, 37(9): 226-233.
LIU Xiao-yi, YANG Jian, LIU Jing, WANG Bing, DAI Liang-ying, LI Wei. Research Progress in Heat Shock Transcription Factors in Oryza sativa[J]. Biotechnology Bulletin, 2021, 37(9): 226-233.
基因名 Gene name | 基因编号 Gene No. | 类别 Category | 定位 Position | 生物学功能 Biological function | 参考文献 Reference |
---|---|---|---|---|---|
OsHsfA2a | LOC_Os03g53340 | A类 | 染色体:3 | 抗氧化胁迫 | [ |
OsHsfA2b | LOC_Os07g08140 | A类 | 染色体:7 | 抗高盐 | [ |
OsHsfA2c | LOC_Os10g28340 | A类 | 染色体:10 | 抗高盐 | [ |
OsHsfA2d | LOC_Os03g06630 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2e | LOC_Os03g58160 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2f | LOC_Os06g36930 | A类 | 染色体:6 | 抗氧化胁迫 | [ |
OsHsfA3 | LOC_Os02g32590 | A类 | 染色体:2 | 抗寒 | [ |
OsHsfA4a | LOC_Os01g54550 | A类 | 染色体:1 | 抗氧化胁迫、增强镉耐受性 | [ |
OsHsfA4b | LOC_Os01g54550 | A类 | 染色体:1 | 抗高盐 | [ |
OsHsfA4d | LOC_Os05g45410 | A类 | 染色体:5 | 抗寒、抑制水稻叶片假斑病 | [ |
OsHsfA5 | LOC_Os02g29340 | A类 | 染色体:2 | 抗高盐 | [ |
OsHsfA7 | LOC_Os01g39020 | A类 | 染色体:1 | 抗高盐、抗寒、抗氧化胁迫、抗干旱 | [ |
OsHsfA9 | LOC_Os03g12370 | A类 | 染色体:3 | 抗高盐、抗寒 | [ |
OsHsf18 | 无 | A类 | 染色体:7 | 耐热、抗寒、抗干旱、抗高盐、抗白叶枯病、参与调控水稻农艺性状 | [ |
OsHsfB2b | LOC_Os08g43334 | B类 | 染色体:8 | 不抗干旱、不耐高盐 | [ |
OsHsfB4b | LOC_Os07g44690 | B类 | 染色体:7 | 抗寒、抗氧化胁迫 | [ |
OsHsfB4d | LOC_Os03g25120 | B类 | 染色体:3 | 抗细菌性条斑病 | [ |
OsHsfB2c2 | 无 | B类 | 无定位 | 抗白叶枯病 | [ |
OsHsf23 | LOC_Os09g28354 | B类 | 染色体:9 | 抑制稻瘟病菌 | [ |
OsHsfC1b | LOC_Os01g53220 | C类 | 染色体:1 | 抗寒、抗高盐 | [ |
表1 水稻HSFs的分类与生物学功能
Table 1 Classification and biological functions of rice HSFs
基因名 Gene name | 基因编号 Gene No. | 类别 Category | 定位 Position | 生物学功能 Biological function | 参考文献 Reference |
---|---|---|---|---|---|
OsHsfA2a | LOC_Os03g53340 | A类 | 染色体:3 | 抗氧化胁迫 | [ |
OsHsfA2b | LOC_Os07g08140 | A类 | 染色体:7 | 抗高盐 | [ |
OsHsfA2c | LOC_Os10g28340 | A类 | 染色体:10 | 抗高盐 | [ |
OsHsfA2d | LOC_Os03g06630 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2e | LOC_Os03g58160 | A类 | 染色体:3 | 耐热 | [ |
OsHsfA2f | LOC_Os06g36930 | A类 | 染色体:6 | 抗氧化胁迫 | [ |
OsHsfA3 | LOC_Os02g32590 | A类 | 染色体:2 | 抗寒 | [ |
OsHsfA4a | LOC_Os01g54550 | A类 | 染色体:1 | 抗氧化胁迫、增强镉耐受性 | [ |
OsHsfA4b | LOC_Os01g54550 | A类 | 染色体:1 | 抗高盐 | [ |
OsHsfA4d | LOC_Os05g45410 | A类 | 染色体:5 | 抗寒、抑制水稻叶片假斑病 | [ |
OsHsfA5 | LOC_Os02g29340 | A类 | 染色体:2 | 抗高盐 | [ |
OsHsfA7 | LOC_Os01g39020 | A类 | 染色体:1 | 抗高盐、抗寒、抗氧化胁迫、抗干旱 | [ |
OsHsfA9 | LOC_Os03g12370 | A类 | 染色体:3 | 抗高盐、抗寒 | [ |
OsHsf18 | 无 | A类 | 染色体:7 | 耐热、抗寒、抗干旱、抗高盐、抗白叶枯病、参与调控水稻农艺性状 | [ |
OsHsfB2b | LOC_Os08g43334 | B类 | 染色体:8 | 不抗干旱、不耐高盐 | [ |
OsHsfB4b | LOC_Os07g44690 | B类 | 染色体:7 | 抗寒、抗氧化胁迫 | [ |
OsHsfB4d | LOC_Os03g25120 | B类 | 染色体:3 | 抗细菌性条斑病 | [ |
OsHsfB2c2 | 无 | B类 | 无定位 | 抗白叶枯病 | [ |
OsHsf23 | LOC_Os09g28354 | B类 | 染色体:9 | 抑制稻瘟病菌 | [ |
OsHsfC1b | LOC_Os01g53220 | C类 | 染色体:1 | 抗寒、抗高盐 | [ |
[1] | Scharf KD, Berberich T, Ebersberger I, et al. The plant heat stress transcription factor(Hsf)family:Structure, function and evolution[J]. Biochimica et Biophysica Acta:BBA - Gene Regulatory Mechanisms, 2012, 1819(2):104-119. |
[2] | Guo M, Liu JH, Ma X, et al. The plant heat stress transcription factors(HSFs):structure, regulation, and function in response to abiotic stresses[J]. Frontiers in Plant Science, 2016, 7:114. |
[3] |
Wan XL, Yang J, Guo C, et al. Genome-wide identification and classification of the Hsf and sHsp gene families in Prunus mume, and transcriptional analysis under heat stress[J]. PeerJ, 2019, 7:e7312.
doi: 10.7717/peerj.7312 URL |
[4] |
Lin YX, Jiang HY, Chu ZX, et al. Genome-wide identification, classification and analysis of heat shock transcription factor family in maize[J]. BMC Genomics, 2011, 12:76.
doi: 10.1186/1471-2164-12-76 URL |
[5] |
Döring P, Treuter E, Kistner C, et al. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2[J]. The Plant Cell, 2000, 12(2):265-278.
doi: 10.1105/tpc.12.2.265 URL |
[6] |
Wu C. Heat shock transcription factors:structure and regulation[J]. Annual Review of Cell and Developmental Biology, 1995, 11:441-469.
doi: 10.1146/cellbio.1995.11.issue-1 URL |
[7] |
Nover L, Scharf KD, Gagliardi D, et al. The Hsf world:classification and properties of plant heat stress transcription factors[J]. Cell Stress & Chaperones, 1996, 1(4):215-223.
doi: 10.1379/1466-1268(1996)001<0215:THWCAP>2.3.CO;2 URL |
[8] | 王国栋, 孔凡英, 孟庆伟. 番茄热激转录因子研究进展[J]. 植物生理学报, 2013, 49(3):217-224. |
Wang GD, Kong FY, Meng QW. Research advancement of heat shock factors in tomato[J]. Plant Physiology Journal, 2013, 49(3):217-224. | |
[9] |
Peteranderl R, Rabenstein M, Shin YK, et al. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor[J]. Biochemistry, 1999, 38(12):3559-3569.
pmid: 10090742 |
[10] |
Nover L, Bharti K, Döring P, et al. Arabidopsis and the heat stress transcription factor world:how many heat stress transcription factors do we need?[J]. Cell Stress & Chaperones, 2001, 6(3):177-189.
doi: 10.1379/1466-1268(2001)006<0177:AATHST>2.0.CO;2 URL |
[11] |
Kotak S, Port M, Ganguli A, et al. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors(Hsfs)and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization[J]. The Plant Journal, 2004, 39(1):98-112.
doi: 10.1111/tpj.2004.39.issue-1 URL |
[12] |
Heerklotz D, Döring P, Bonzelius F, et al. The balance of nuclear import and export determines the intracellular distribution and function of tomato heat stress transcription factor HsfA2[J]. Molecular and Cellular Biology, 2001, 21(5):1759-1768.
pmid: 11238913 |
[13] |
von Koskull-Döring P, Scharf KD, Nover L. The diversity of plant heat stress transcription factors[J]. Trends in Plant Science, 2007, 12(10):452-457.
pmid: 17826296 |
[14] |
Mittal D, Chakrabarti S, Sarkar A, et al. Heat shock factor gene family in rice:Genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses[J]. Plant Physiology and Biochemistry, 2009, 47(9):785-795.
doi: 10.1016/j.plaphy.2009.05.003 URL |
[15] |
Liu AL, Zou J, Zhang XW, et al. Expression profiles of class A rice heat shock transcription factor genes under abiotic stresses[J]. Journal of Plant Biology, 2010, 53(2):142-149.
doi: 10.1007/s12374-010-9099-6 URL |
[16] |
Cheng Q, Zhou Y, Liu Z, et al. An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice[J]. Plant Biology, 2015, 17(2):419-429.
doi: 10.1111/plb.12267 pmid: 25255693 |
[17] | 杨双蕾. 水稻OsHsfA2e基因的克隆、遗传转化与功能分析[D]. 长春:吉林大学, 2016. |
Yang SL. Cloning, transformation and functional analysis of OsHsfA2e gene in rice[D]. Changchun:Jilin University, 2016. | |
[18] |
Chauhan H, Khurana N, Agarwal P, et al. Heat shock factors in rice(Oryza sativa L. ):genome-wide expression analysis during reproductive development and abiotic stress[J]. Molecular Genetics and Genomics, 2011, 286(2):171-187.
doi: 10.1007/s00438-011-0638-8 pmid: 21792744 |
[19] | 党姣, 蒋明义, 林凡. ABA上调水稻叶片中OsHsf基因的表达[J]. 南京农业大学学报, 2010, 33(1):11-15. |
Dang J, Jiang MY, Lin F. ABA up-regulates the expression of OsHsf genes in leaves of rice plants[J]. Journal of Nanjing Agricultural University, 2010, 33(1):11-15. | |
[20] |
Shim D, Hwang JU, Lee J, et al. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J]. The Plant Cell, 2009, 21(12):4031-4043.
doi: 10.1105/tpc.109.066902 URL |
[21] |
Huang QN, Shi YF, Yang Y, et al. Characterization and genetic analysis of a light- and temperature-sensitive spotted-leaf mutant in rice[J]. Journal of Integrative Plant Biology, 2011, 53(8):671-681.
doi: 10.1111/jipb.2011.53.issue-8 URL |
[22] |
Liu AL, Zou J, Liu CF, et al. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice[J]. BMB Reports, 2013, 46(1):31-36.
doi: 10.5483/BMBRep.2013.46.1.090 URL |
[23] |
Xiang JH, Ran J, Zou J, et al. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice[J]. Plant Cell Reports, 2013, 32(11):1795-1806.
doi: 10.1007/s00299-013-1492-4 URL |
[24] |
Mittal D, Madhyastha DA, Grover A. Gene expression analysis in response to low and high temperature and oxidative stresses in rice:Combination of stresses evokes different transcriptional changes as against stresses applied individually[J]. Plant Science, 2012, 197:102-113.
doi: 10.1016/j.plantsci.2012.09.008 URL |
[25] | 覃瀚仪. 水稻热激转录因子OsHSF18调控水稻抗逆性的功能研究[D]. 长沙:湖南农业大学, 2015. |
Qin HY. Functions of heat shock transcription factor OsHSF18 in regulating rice stress resistance[D]. Changsha:Hunan Agricultural University, 2015. | |
[26] | 李丽. 水稻热激转录因子OsHsf18调控植物抗生物胁迫与非生物胁迫的功能机制研究[D]. 长沙:湖南农业大学, 2018. |
Li L. The functional mechanism of rice heat shock transcription factor OsHsf18 on regulating plant resistance against biotic and abiotic stresses[D]. Changsha:Hunan Agricultural University, 2018. | |
[27] | 冉静. 水稻OsHsfB2b基因功能的初步研究和OsbZIP74基因的载体构建及遗传转化[D]. 长沙:湖南农业大学, 2012. |
Ran J. Preliminary functional characterization of OsHsfB2b and vector construction and genetic transformation of OsbZIP74Genes in rice[D]. Changsha:Hunan Agricultural University, 2012. | |
[28] | Yang W, Ju YH, Zuo LP, et al. OsHsfB4d binds the promoter and regulates the expression of OsHsp18. 0-CI to resistant against Xanthomonas oryzae[J]. Rice:New York, N Y, 2020, 13(1):28. |
[29] | 封雷. 热激转录因子和XooIARP在水稻抗白叶枯病中作用的初探[D]. 金华:浙江师范大学, 2011. |
Feng L. The roles of heat shock factors and XooIARP in resistance to bacterial blight in rice[D]. Jinhua:Zhejiang Normal University, 2011. | |
[30] |
Tanabe S, Onodera H, Hara N, et al. The elicitor-responsive gene for a GRAS family protein, CIGR2, suppresses cell death in rice inoculated with rice blast fungus via activation of a heat shock transcription factor, OsHsf23[J]. Bioscience, Biotechnology, and Biochemistry, 2016, 80(1):145-151.
doi: 10.1080/09168451.2015.1075866 URL |
[31] | Schmidt R, Schippers JHM, Welker A, et al. Transcription factor OsHsfC1b regulates salt tolerance and development in Oryza sativa ssp. Japonica[J]. AoB Plants, 2012, 2012: pls011. |
[32] |
Pezeshki SR, Ernst WHO, Chabbi A. The dedicated issue of Environmental and Experimental Botany[J]. Environmental and Experimental Botany, 2001, 46(3):191-193.
doi: 10.1016/S0098-8472(01)00098-3 URL |
[33] |
Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, et al. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synjournal of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiology, 2004, 136(2):3148-3158.
pmid: 15466240 |
[34] | 张新, 李明娟, 张斌, 等. 水稻PHD-finger转录因子基因OsMsr16增强耐盐性的可能性研究[J]. 基因组学与应用生物学, 2016, 35(7):1820-1827. |
Zhang X, Li MJ, Zhang B, et al. Possibility study on improving salt tolerance of rice by overexpressing PHD-finger transcription factor gene OsMsr16[J]. Genomics and Applied Biology, 2016, 35(7):1820-1827. | |
[35] |
Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress[J]. Physiologia Plantarum, 2008, 133(3):481-489.
doi: 10.1111/j.1399-3054.2008.01090.x URL |
[36] | 王永平, 杨万荣, 廖芳芳, 等. 镉低积累作物筛选及其与超富集植物间套作应用进展[J]. 广东农业科学, 2015, 42(24):92-98. |
Wang YP, Yang WR, Liao FF, et al. Advances on screening of Cd low-accumulation crops and its intercropping with hyperaccumulator[J]. Guangdong Agricultural Sciences, 2015, 42(24):92-98. | |
[37] | 李新瑞, 张曦, 张正光, 等. 转录因子MoMsn2的核定位和核输出信号序列参与调控稻瘟病菌的生长发育和致病力[J]. 植物病理学报, 2018, 48(6):778-786. |
Li XR, Zhang X, Zhang ZG, et al. The nuclear localization and nuclear export signal sequences of the transcription factor MoMsn2 are important for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. Acta Phytopathologica Sinica, 2018, 48(6):778-786. | |
[38] |
Kaku H, Nishizawa Y, Ishii-Minami N, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J]. PNAS, 2006, 103(29):11086-11091.
doi: 10.1073/pnas.0508882103 URL |
[39] |
Shimizu T, Nakano T, Takamizawa D, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice[J]. The Plant Journal, 2010, 64(2):204-214.
doi: 10.1111/j.1365-313X.2010.04324.x pmid: 21070404 |
[40] |
Kouzai Y, Mochizuki S, Nakajima K, et al. Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice[J]. Molecular Plant-Microbe Interactions, 2014, 27(9):975-982.
doi: 10.1094/MPMI-03-14-0068-R URL |
[41] |
Niño-Liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars:model pathogens of a model crop[J]. Molecular Plant Pathology, 2006, 7(5):303-324.
doi: 10.1111/j.1364-3703.2006.00344.x pmid: 20507449 |
[42] | 匡洁, 胡海涛, 张维林, 等. 比较12个OsHsfs在抗感水稻品种响应白叶枯病菌中的表达[J]. 热带作物学报, 2013, 34(1):125-129. |
Kuang J, Hu HT, Zhang WL, et al. Comparative expression analysis of twelve OsHsfs in resistant and susceptible rice to bacterial blight[J]. Chinese Journal of Tropical Crops, 2013, 34(1):125-129. | |
[43] |
Yang W, Zhang BG, Qi GH, et al. Identification of the phytosulfokine receptor 1(OsPSKR1)confers resistance to bacterial leaf streak in rice[J]. Planta, 2019, 250(5):1603-1612.
doi: 10.1007/s00425-019-03238-8 pmid: 31388828 |
[44] |
Hummel AW, Wilkins KE, Wang L, et al. A transcription activator-like effector from Xanthomonas oryzae pv. oryzicola elicits dose-dependent resistance in rice[J]. Molecular Plant Pathology, 2017, 18(1):55-66.
doi: 10.1111/mpp.12377 pmid: 26821568 |
[45] |
Ju YH, Tian HJ, Zhang RH, et al. Overexpression of OsHSP18. 0-CI enhances resistance to bacterial leaf streak in rice[J]. Rice, 2017, 10(1):1-11.
doi: 10.1186/s12284-016-0141-2 URL |
[46] |
Wu CJ, Bordeos A, Madamba MRS, et al. Rice lesion mimic mutants with enhanced resistance to diseases[J]. Molecular Genetics and Genomics, 2008, 279(6):605-619.
doi: 10.1007/s00438-008-0337-2 URL |
[47] |
Huang QN, Yang Y, Shi YF, et al. Spotted-leaf mutants of rice(Oryza sativa)[J]. Rice Science, 2010, 17(4):247-256.
doi: 10.1016/S1672-6308(09)60024-X URL |
[48] |
Yamanouchi U, Yano M, Lin HX, et al. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7530-7535.
pmid: 12032317 |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[5] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[6] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[7] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[8] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[9] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[10] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[11] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[12] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[13] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[14] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[15] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||