生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 3-10.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0740
• 青贮微生物专题(专题主编:杨富裕 教授) • 上一篇 下一篇
收稿日期:
2021-06-10
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
田静,女,博士研究生,研究方向:牧草加工与利用;E-mail: 基金资助:
Received:
2021-06-10
Published:
2021-09-26
Online:
2021-10-25
摘要:
植物表面附着乳酸菌(LAB)的种类与数量是决定其青贮发酵品质的关键因素,也可能影响植物的健康生长。研究发现植物表面LAB受到诸多因素的影响。本文对植物特性(叶表面结构、叶表面营养成分、化学组成等)、外界环境(温湿度、降雨、氧气、光照等)、田间管理(施肥、刈割)等因素对LAB种类与数量分布的影响及机理进行了详细的论述,以便更好地把握植物表面LAB的分布情况,从种植管理、收获技术等入手提高植物表面优良LAB的种类与数量,为调制优质青贮饲料和植物健康生长提供科学依据。
田静, 张建国. 植物表面乳酸菌分布研究进展[J]. 生物技术通报, 2021, 37(9): 3-10.
TIAN Jing, ZHANG Jian-guo. Research Progress in the Distribution of Lactic Acid Bacteria on the Surface of Plants[J]. Biotechnology Bulletin, 2021, 37(9): 3-10.
[1] | McDonald P, Henderson AR, Heron SJE. The Biochemistry of Silage[M]. Marlow:Chalcombe Publications, 1991. |
[2] | Pahlow G, Muck RE. Silage Science and Technology[M]. USA Madison:ASAI. CSSAI. SSSAI., 2003. |
[3] |
Yang LL, Yuan XJ, Li JF, et al. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant[J]. Bioresour Technol, 2019, 275:280-287.
doi: 10.1016/j.biortech.2018.12.067 URL |
[4] | Zhang JG, Yamada A, Aoki Y, et al. Effects of selected hetero-fermentative lactic acid bacteria on the production and utilization of silage[J]. Grassland Science, 2004, 50(suppl.):208-209. |
[5] |
Yahaya MS, Goto M, Yimiti W, et al. Evaluation of fermentation quality of a tropical and temperate forage crops ensiled with additives of fermented juice of epiphytic lactic acid bacteria(FJLB)[J]. Asian Australas J Anim Sci, 2004, 17(7):942-946.
doi: 10.5713/ajas.2004.942 URL |
[6] |
Muck RE. Initial bacteria numbers on lucerne prior to ensiling[J]. Grass Forage Sci, 1989, 44(1):19-25.
doi: 10.1111/gfs.1989.44.issue-1 URL |
[7] |
Lin C, Bolsen KK, Brent BE, et al. Epiphytic microflora on alfalfa and whole-plant corn[J]. J Dairy Sci, 1992, 75(9):2484-2493.
pmid: 1452853 |
[8] | 森地敏树, 大山嘉信. 牧草表面乳酸杆菌(lactobacilli)分布[J]. 日本畜产学会报, 1972, 43(5):264-267. |
Toshiki MORICHI and Yoshinobu OHYAM. Distribution of lactobacilli on grasses[J]. Nihon Chikusan Gakkaiho, 1972, 43(5):264-267. | |
[9] | 蔡义民, 熊井清雄, 廖芷, 等. 乳酸菌剂对青贮饲料发酵品质的改善效果[J]. 中国农业科学, 1995, 28(2):73-82. |
Cai YM, Xiong JQX, Liao Z, et al. Effect of lactic acid bacteria inoculants on fermentative quality of silage[J]. Sci Agricutura Sin, 1995, 28(2):73-82. | |
[10] |
Zhang JG, Cai YM, Kobayashi R, et al. Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation[J]. J Sci Food Agric, 2000, 80(10):1455-1460.
doi: 10.1002/(ISSN)1097-0010 URL |
[11] |
Stirling AC, Whittenbury R. Sources of the lactic acid bacteria occurring in silage[J]. J Appl Bacteriol, 1963, 26(1):86-90.
doi: 10.1111/jam.1963.26.issue-1 URL |
[12] | Sun R, Yuan X, Li J, et al. Contributions of epiphytic microbiota on the fermentation characteristics and microbial composition of ensiled six whole crop corn varieties[J]. J Appl Microbiol, 2021:jam.15064. |
[13] |
Wang MS, Franco M, Cai YM, et al. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture[J]. Animal Feed Sci Technol, 2020, 270:114702.
doi: 10.1016/j.anifeedsci.2020.114702 URL |
[14] |
Nazar M, Wang S, Zhao J, et al. Abundance and diversity of epiphytic microbiota on forage crops and their fermentation characteristic during the ensiling of sterile Sudan grass[J]. World J Microbiol Biotechnol, 2021, 37(2):27.
doi: 10.1007/s11274-020-02991-3 URL |
[15] |
Dong ZH, Shao T, Li JF, et al. Effect of alfalfa microbiota on fermentation quality and bacterial community succession in fresh or sterile Napier grass silages[J]. J Dairy Sci, 2020, 103(5):4288-4301.
doi: 10.3168/jds.2019-16961 URL |
[16] |
Wang SR, Zhao J, Dong ZH, et al. Sequencing and microbiota transplantation to determine the role of microbiota on the fermentation type of oat silage[J]. Bioresour Technol, 2020, 309:123371.
doi: 10.1016/j.biortech.2020.123371 URL |
[17] |
Shah AA, Wu J, Qian C, et al. Ensiling of whole-plant hybrid Pen-nisetum with natamycin and Lactobacillus plantarum impacts on fermentation characteristics and meta-genomic microbial community at low temperature[J]. J Sci Food Agric, 2020, 100(8):3378-3385.
doi: 10.1002/jsfa.v100.8 URL |
[18] |
Li DX, Ni KK, Zhang YC, et al. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures[J]. Asian Australas J Animal Sci, 2019, 32(5):665-674.
doi: 10.5713/ajas.18.0085 URL |
[19] |
Langston CW, Bouma C, Conner RM. Chemical and bacteriological changes in grass silage during the early stages of fermentation. II. bacteriological changes[J]. J Dairy Sci, 1962, 45(5):618-624.
doi: 10.3168/jds.S0022-0302(62)89460-0 URL |
[20] |
Chen LY, Bai SQ, You MH, et al. Effect of a low temperature tolerant lactic acid bacteria inoculant on the fermentation quality and bacterial community of oat round bale silage[J]. Animal Feed Sci Technol, 2020, 269:114669.
doi: 10.1016/j.anifeedsci.2020.114669 URL |
[21] |
Ding Z, Bai J, Xu D, et al. Microbial community dynamics and natural fermentation profiles of ensiled alpine grass Elymus nutans prepared from different regions of the Qinghai-Tibetan Plateau[J]. Front Microbiol, 2020, 11:855.
doi: 10.3389/fmicb.2020.00855 URL |
[22] |
Bai J, Ding Z, Ke W, et al. Different lactic acid bacteria and their combinations regulated the fermentation process of ensiled alfalfa:ensiling characteristics, dynamics of bacterial community and their functional shifts[J]. Microb Biotechnol, 2021, 14(3):1171-1182.
doi: 10.1111/mbt2.v14.3 URL |
[23] |
Xu DM, Ding ZT, Wang MS, et al. Characterization of the microbial community, metabolome and biotransformation of phenolic compounds of sainfoin(Onobrychis viciifolia)silage ensiled with or without inoculation of Lactobacillus plantarum[J]. Bioresour Technol, 2020, 316:123910.
doi: 10.1016/j.biortech.2020.123910 URL |
[24] | 陈鑫珠. 植物表面乳酸菌分布及其影响因素研究[D]. 广州:华南农业大学, 2013 |
Chen XZ. Study on distribution of lactic acid bacteria on plant surface and the main influencing factors[D]. Guangzhou:South China Agriculture University, 2013 | |
[25] |
Chen XZ, Zhuang YF, Dong ZX, et al. Factors influencing the distribution of lactic acid bacteria on Pennisetum grasses[J]. Grassl Sci, 2017, 63(3):150-158.
doi: 10.1111/grs.2017.63.issue-3 URL |
[26] |
Pang HL, Zhang M, Qin GY, et al. Identification of lactic acid bacteria isolated from corn stovers[J]. Animal Sci J, 2011, 82(5):642-653.
doi: 10.1111/asj.2011.82.issue-5 URL |
[27] |
Yang H, Wang B, Zhang Q, et al. Improvement of fermentation quality in the fermented total mixed ration with oat silage[J]. Microorganisms, 2021, 9(2):420.
doi: 10.3390/microorganisms9020420 URL |
[28] |
Minervini F, Celano G, Lattanzi A, et al. Lactic acid bacteria in durum wheat flour are endophytic components of the plant during its entire life cycle[J]. Appl Environ Microbiol, 2015, 81(19):6736-6748.
doi: 10.1128/AEM.01852-15 URL |
[29] |
Yu AO, Leveau JHJ, Marco ML. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria[J]. Environ Microbiol Rep, 2020, 12(1):16-29.
doi: 10.1111/emi4.v12.1 URL |
[30] |
Yadav RKP, Karamanoli K, Vokou D. Bacterial populations on the phyllosphere of Mediterranean plants:influence of leaf age and leaf surface[J]. Front Agric China, 2011, 5(1):60-63.
doi: 10.1007/s11703-011-1068-4 URL |
[31] |
Tang GJ, Xu LX, Yin X, et al. Microbial colonization on the leaf surfaces of different genotypes of Napier grass[J]. Arch Microbiol, 2021, 203(1):335-346.
doi: 10.1007/s00203-020-02025-4 URL |
[32] |
Wilson M, Lindow SE. Ecological similarity and coexistence of epiphytic ice-nucleating(ice)Pseudomonas syringae strains and a non-ice-nucleating(ice)biological control agent[J]. Appl Environ Microbiol, 1994, 60(9):3128-3137.
doi: 10.1128/aem.60.9.3128-3137.1994 URL |
[33] | 田静. 乳酸菌在牧草表面的生存能力及对青贮的影响研究[D]. 广州:华南农业大学, 2018. |
Tian J. Study on the survival ability of lactic acid bacteria on grass surface and its effect on silage[D]. Guangzhou:South China Agricultural University, 2018. | |
[34] |
Hofvendahl K, Hahn-Hägerdal B. Factors affecting the fermentative lactic acid production from renewable resources1[J]. Enzyme Microb Technol, 2000, 26(2/3/4):87-107.
doi: 10.1016/S0141-0229(99)00155-6 URL |
[35] | Endo A, Maeno S, Tanizawa Y, et al. Fructophilic lactic acid bacteria, a unique group of fructose-fermenting microbes[J]. Appl Environ Microbiol, 2018, 84(19):e01290-18. |
[36] |
Garde A, Jonsson G, Schmidt AS, et al. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis[J]. Bioresour Technol, 2002, 81(3):217-223.
doi: 10.1016/S0960-8524(01)00135-3 URL |
[37] |
Golomb BL, Marco ML. Lactococcus lactis metabolism and gene expression during growth on plant tissues[J]. J Bacteriol, 2015, 197(2):371-381.
doi: 10.1128/JB.02193-14 URL |
[38] | 唐国建. 影响植物表面乳酸菌分布的主要因素及其机理研究[D]. 广州:华南农业大学, 2021. |
Tang GJ. Research on the main factors and mechanisms affecting the distribution of lactic acid bacteria on plant surfaces[D]. Guangzhou:South China Agriculture University, 2021 | |
[39] |
Mercier J, Lindow SE. Role of leaf surface sugars in colonization of plants by bacterial epiphytes[J]. Appl Environ Microbiol, 2000, 66(1):369-374.
doi: 10.1128/AEM.66.1.369-374.2000 URL |
[40] | Mundt JO. Occurrence of enterococci on plants in a wild environment[J]. Appl Microbiol, 1963, 11:141-144. |
[41] | 陈鑫珠, 张建国. 刈割到青贮填装前乳酸菌的动态变化[J]. 草地学报, 2017, 25(3):646-650. |
Chen XZ, Zhang JG. The changes of lactic acid bacteria on plants from harvest to ensiling[J]. Acta Agrestia Sin, 2017, 25(3):646-650. | |
[42] |
Kinkel LL, Wilson M, Lindow SE. Plant species and plant incubation conditions influence variability in epiphytic bacterial population size[J]. Microb Ecol, 2000, 39(1):1-11.
pmid: 10790512 |
[43] | Beattie GA, Axtell CA. The use of proU-gfp transcriptional fusion to quantify water stress on the leaf surface, In Leong SA, Allen C, Triplett EW(ed. ), Biology of plant-microbe interactions[M]. 2002, pp.235-240. |
[44] |
Mew TW. Scanning electron microscopy of virulent and avirulent strains of Xanthomonas campestris pv. oryzaeon rice leaves[J]. Phytopathology, 1984, 74(6):635.
doi: 10.1094/Phyto-74-635 URL |
[45] |
Bickford CP. Ecophysiology of leaf trichomes[J]. Funct Plant Biol, 2016, 43(9):807-814.
doi: 10.1071/FP16095 URL |
[46] |
Knoll D, Schreiber L. Plant-microbe interactions:wetting of ivy(Hedera helix L.)leaf surfaces in relation to colonization by epiphytic microorganisms[J]. Microb Ecol, 2000, 40(1):33-42.
doi: 10.1007/s002480000012 pmid: 10977875 |
[47] | 陈卫. 乳酸菌科学与技术[M]. 北京: 科学出版社, 2019. |
Chen W. Science and technology of lactic acid bacteria[M]. Beijing: Science Press, 2019. | |
[48] | Chen XZ, Xie ZL, Zhang TF, et al. Diversity of lactic acid bacteria on grasses and the influencing factors on them, The 7th International Symposium on Lactic acid Bacteria and Health/The 3rd Asian Symposium on Lactic Acid Bacteria, Wuxi, 2012. |
[49] |
Guan H, Yan Y, Li X, et al. Microbial communities and natural fermentation of corn silages prepared with farm bunker-Silo in Southwest China[J]. Bioresour Technol, 2018, 265:282-290.
doi: 10.1016/j.biortech.2018.06.018 URL |
[50] |
Stirling AC. Lactobacilli and silage-making[J]. Proc Soc Appl Bacteriol, 1953, 16(1):27-29.
doi: 10.1111/jam.1953.16.issue-1 URL |
[51] |
Williams TR, Moyne AL, Harris LJ, et al. Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere[J]. PLoS One, 2013, 8(7):e68642.
doi: 10.1371/journal.pone.0068642 URL |
[52] | Daranas N, Bonaterra A, Francés J, et al. Monitoring viable cells of the biological control agent Lactobacillus plantarum PM411 in aerial plant surfaces by means of a strain-specific viability quantitative PCR method[J]. Appl Environ Microbiol, 2018, 84(10):e00107-18. |
[53] |
Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides:functionality and prospects[J]. Int J Mol Sci, 2012, 13(11):14002-14015.
doi: 10.3390/ijms131114002 URL |
[54] |
Pedersen MB, Gaudu P, Lechardeur D, et al. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology[J]. Annu Rev Food Sci Technol, 2012, 3(1):37-58.
doi: 10.1146/food.2012.3.issue-1 URL |
[55] |
Zotta T, Parente E, Ricciardi A. Aerobic metabolism in the genus Lactobacillus:impact on stress response and potential applications in the food industry[J]. J Appl Microbiol, 2017, 122(4):857-869.
doi: 10.1111/jam.13399 pmid: 28063197 |
[56] |
Golomb BL, Yu AO, Coates LC, et al. TheLactococcus lactisKF147 nonribosomal peptide synthetase/polyketide synthase system confers resistance to oxidative stress during growth on plant leaf tissue lysate[J]. MicrobiologyOpen, 2018, 7(1):e00531.
doi: 10.1002/mbo3.531 URL |
[57] | Pedgley DE. Aerobiology:the atmosphere as a source and sink for microbes[C]// Microb Ecol Leaves, 1991:43-59. |
[58] | 尉志霞. 不同生育期和日间刈割时间对紫花苜蓿青贮特性和发酵品质的影响[D]. 太谷:山西农业大学, 2019. |
Yu ZX. The effect of different growth periods and diurnal cutting times on the ensiling characters and fermentation quality of alfalfa[D]. Taigu:Shanxi Agricultural University, 2019. | |
[59] |
Lindow SE, Brandl MT. Microbiology of the phyllosphere[J]. Appl Environ Microbiol, 2003, 69(4):1875-1883.
doi: 10.1128/AEM.69.4.1875-1883.2003 URL |
[60] |
Sundin GW, Jacobs JL. Ultraviolet radiation(UVR)sensitivity analysis and UVR survival strategies of a bacterial community from the phyllosphere of field-grown peanut(Arachis hypogeae L.)[J]. Microb Ecol, 1999, 38(1):27-38.
pmid: 10384007 |
[61] | 李春江. 品种、播种量和施氮量对全株小麦饲用价值的影响[D]. 广州:华南农业大学, 2015. |
Li CJ. Effects of varieties, N applying and seeding rates on nutritive value and fermentation quality of whole-crop wheat[D]. Guangzhou:South China Agriculture University, 2015 | |
[62] | 罗希茜, 郝晓晖, 陈涛, 等. 长期不同施肥对稻田土壤微生物群落功能多样性的影响[J]. 生态学报, 2009, 29(2):740-748. |
Luo XQ, Hao XH, Chen T, et al. Effects of long-term different fertilization on microbial community functional diversity in paddy soil[J]. Acta Ecol Sin, 2009, 29(2):740-748. | |
[63] | 陈鑫珠, 张建国. 不同茬次和高度热研四号王草的乳酸菌分布及青贮发酵品质[J]. 草业学报, 2021, 30(1):150-158. |
Chen XZ, Zhang JG. Effects of cutting time and plant height of ‘Reyan No. 4’ king grass on distribution of lactic acid bacteria and silage fermentation quality[J]. Acta Prataculturae Sin, 2021, 30(1):150-158. | |
[64] | Torriani S, Dellaglio F, Palummeri M, et al. Detection and characterization of epiphytic lactic acid bacteria on growing plants of maize(Zea mays L.)and lucerne(Medicago sativa L.)[with relationship with animal feeding][J]. Annali di Microbiologia ed Enzimologia, 1992, 42:49-59. |
[65] |
Zeng T, Li X, Guan H, et al. Dynamic microbial diversity and fermentation quality of the mixed silage of corn and soybean grown in strip intercropping system[J]. Bioresour Technol, 2020, 313:123655.
doi: 10.1016/j.biortech.2020.123655 URL |
[66] | Xu LX, Hu YQ, Li XQ, et al. Effects of wheat-legume cultures on the fermentation quality and protein degradation of silage[J]. Grassl Sci, 2021: grs.12329. |
[67] |
Leong KH, Chen YS, Pan SF, et al. Diversity of lactic acid bacteria associated with fresh coffee cherries in Taiwan[J]. Curr Microbiol, 2014, 68(4):440-447.
doi: 10.1007/s00284-013-0495-2 URL |
[68] |
Lamont JR, Wilkins O, Bywater-Ekegärd M, et al. From yogurt to yield:Potential applications of lactic acid bacteria in plant production[J]. Soil Biol Biochem, 2017, 111:1-9.
doi: 10.1016/j.soilbio.2017.03.015 URL |
[69] |
Ercolini D, Fogliano V. Food design to feed the human gut microbiota[J]. J Agric Food Chem, 2018, 66(15):3754-3758.
doi: 10.1021/acs.jafc.8b00456 URL |
[1] | 梁成刚, 汪燕, 李天, 大杉立, 青木直大. SP1调控碳水化合物分配对穗形态的影响[J]. 生物技术通报, 2023, 39(5): 152-159. |
[2] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[3] | 任海伟, 孙一帆, 任雨薇, 郭晓鹏, 潘立超, 张丙云, 李金平. 基于文献计量的青贮添加剂研究进展[J]. 生物技术通报, 2022, 38(8): 261-274. |
[4] | 陈梦言, 白洁, 柯文灿, 许冬梅, 艾琳, 郭旭生. 青贮饲料微生物群落组成与功能研究进展[J]. 生物技术通报, 2021, 37(9): 11-23. |
[5] | 辛亚芬, 陈晨, 曾泰儒, 杜昭昌, 倪浩然, 钟怡豪, 谭小平, 闫艳红. 青贮添加剂对微生物多样性影响的研究进展[J]. 生物技术通报, 2021, 37(9): 24-30. |
[6] | 徐进益, 那彬彬, 刘顺, 陈超, 孙红, 郑玉龙. 青贮饲料的优良乳酸菌及其应用[J]. 生物技术通报, 2021, 37(9): 39-47. |
[7] | 张颖超, 尹守亮, 王一炜, 王学凯, 杨富裕. 木本饲料青贮研究进展[J]. 生物技术通报, 2021, 37(9): 48-57. |
[8] | 姜富贵, 成海建, 魏晨, 张召坤, 苏文政, 时光, 宋恩亮. 糖蜜添加量对杂交构树青贮发酵品质和微生物多样性的影响[J]. 生物技术通报, 2021, 37(9): 68-76. |
[9] | 王琦, 武之绚, 陈钟玲, 吴白乙拉, 胡宗福, 牛化欣. 副干酪乳杆菌对青贮苜蓿有氧暴露品质和细菌多样性的影响[J]. 生物技术通报, 2021, 37(9): 77-85. |
[10] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[11] | 赵雅茹, 许庆方, 高文俊, 郭刚, 陈雷, 玉柱. 抑霉乳酸菌脱毒特性及青贮应用的研究[J]. 生物技术通报, 2021, 37(9): 95-105. |
[12] | 黄元霞, 彭传海, 丁宁, 邱忠平, 李星, 邹美慧. 一种三联乳酸菌的体外降胆固醇和抗氧化能力研究[J]. 生物技术通报, 2020, 36(12): 113-120. |
[13] | 刘洋儿, 郭明璋, 杜若曦, 贺晓云, 黄昆仑, 许文涛. 乳酸菌在合成生物学中的研究现状及展望[J]. 生物技术通报, 2019, 35(8): 193-204. |
[14] | 黄湘湄, 吴雅茜, 刘颖, 梁嘉烨, 苏伟明. 海洋源乳酸菌AI-2类群体感应抑制剂对单增李斯特菌抑制效果研究[J]. 生物技术通报, 2019, 35(4): 36-42. |
[15] | 吕晓萌, 胡彤, 俞婷, 崔艳华. 细菌异源表达抗菌肽的研究进展[J]. 生物技术通报, 2014, 0(5): 37-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||