生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 24-30.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0818
• 青贮微生物专题(专题主编:杨富裕 教授) • 上一篇 下一篇
辛亚芬(), 陈晨, 曾泰儒, 杜昭昌, 倪浩然, 钟怡豪, 谭小平, 闫艳红()
收稿日期:
2021-06-28
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
辛亚芬,女,硕士研究生,研究方向:饲草生产及利用;E-mail: 基金资助:
XIN Ya-fen(), CHEN Chen, ZENG Tai-ru, DU Zhao-chang, NI Hao-ran, ZHONG Yi-hao, TAN Xiao-ping, YAN Yan-hong()
Received:
2021-06-28
Published:
2021-09-26
Online:
2021-10-25
摘要:
牧草青贮是一个非常复杂的微生物活动和生物化学变化的过程,青贮饲料的质量取决于青贮开始时的微生物群落及其发酵过程中的演替。添加剂对青贮微生物多样性及青贮品质起着至关重要的作用,主要通过促进乳酸菌等优势菌群的快速发酵,降低pH,制造酸性环境,抑制不良微生物的繁殖,提高牧草青贮发酵品质和有氧稳定性。本文重点综述了乳酸菌剂、化学添加剂、酶制剂、营养性添加剂对牧草青贮中微生物的菌群结构的影响,旨在对青贮发酵进程中微生物作用机理的深入研究及青贮添加剂的定向研发等方面提供参考。
辛亚芬, 陈晨, 曾泰儒, 杜昭昌, 倪浩然, 钟怡豪, 谭小平, 闫艳红. 青贮添加剂对微生物多样性影响的研究进展[J]. 生物技术通报, 2021, 37(9): 24-30.
XIN Ya-fen, CHEN Chen, ZENG Tai-ru, DU Zhao-chang, NI Hao-ran, ZHONG Yi-hao, TAN Xiao-ping, YAN Yan-hong. Research Progress in the Effects of Additives to Silage on Microbial Diversity[J]. Biotechnology Bulletin, 2021, 37(9): 24-30.
[1] |
Keshri J, Chen Y, Pinto R, et al. Bacterial dynamics of wheat silage[J]. Frontiers in Microbiology, 2019, 10:1532.
doi: 10.3389/fmicb.2019.01532 URL |
[2] |
Yang J, Cao Y, et al. Natural populations of lactic acid bacteria isolated from vegetable residues and silage fermentation[J]. Journal of Dairy Science, 2010, 93(7):3136-3145.
doi: 10.3168/jds.2009-2898 pmid: 20630231 |
[3] | 玉柱, 贾玉山. 牧草饲料加工与贮藏[M]. 北京: 中国农业大学出版社, 2016. |
Yu Z, Jia YS. Forage processing and storage[M]. Beijing: China Agricultural University Press, 2016. | |
[4] |
Muck RE, Nadeau EMG, McAllister TA, et al. Silage review:recent advances and future uses of silage additives[J]. Journal of Dairy Science, 2018, 101(5):3980-4000.
doi: S0022-0302(18)30322-9 pmid: 29685273 |
[5] |
Kung LM, Shaver RD, Grant RJ, et al. Silage review:interpretation of chemical, microbial, and organoleptic components of silages[J]. Journal of Dairy Science, 2018, 101(5):4020-4033.
doi: 10.3168/jds.2017-13909 URL |
[6] |
Muck RE. Recent advances in silage microbiology[J]. Agricultural and Food Science, 2013, 22(1):3-15.
doi: 10.23986/afsci.6718 URL |
[7] |
Weinberg ZG, Muck RE. New trends and opportunities in the development and use of inoculants for silage[J]. FEMS Microbiology Reviews, 1996, 19(1):53-68.
doi: 10.1111/j.1574-6976.1996.tb00253.x URL |
[8] |
Kristensen NB, Sloth KH, Højberg O, et al. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions[J]. Journal of Dairy Science, 2010, 93(8):3764-3774.
doi: 10.3168/jds.2010-3136 pmid: 20655446 |
[9] |
Tabacco E, Piano S, Revello-Chion A, et al. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions[J]. Journal of Dairy Science, 2011, 94(11):5589-5598.
doi: 10.3168/jds.2011-4286 pmid: 22032382 |
[10] | 郭盼, 单贵莲, 薛世明, 等. 发酵促进型青贮添加剂的研究进展及其应用现状[J]. 草业与畜牧, 2012(7):50-54, 62. |
Guo P, Shan GL, Xue SM, et al. Research progress of promoting silage additives[J]. Journal of Grassland and Forage Science, 2012(7):50-54, 62. | |
[11] |
Ennahar S, Cai YM, Fujita Y. Phylogenetic diversity of lactic acid bacteria associated with paddy rice silage as determined by 16S ribosomal DNA analysis[J]. Applied and Environmental Microbiology, 2003, 69(1):444-451.
doi: 10.1128/AEM.69.1.444-451.2003 pmid: 12514026 |
[12] |
Lin CJ, Bols en KK, Brent BE, et al. Epiphytic lactic acid bacteria succession during the pre-ensiling and ensiling periods of alfalfa and maize[J]. J Appl Bacter, 1992, 73(5):375-387.
doi: 10.1111/jam.1992.73.issue-5 URL |
[13] | 李小铃, 关皓, 等. 单一和复合乳酸菌添加剂对扁穗牛鞭草青贮品质的影响[J]. 草业学报, 2019, 28(6):119-127. |
Li XL, Guan H, Shuai Y, et al. Effect of single and multiple inoculants on hemarthria compressa silage quality[J]. Acta Prataculturae Sinica, 2019, 28(6):119-127. | |
[14] |
Yan YH, Li XM, Guan H, et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria[J]. Bioresource Technology, 2019, 279:166-173.
doi: 10.1016/j.biortech.2019.01.107 URL |
[15] |
Yang FY, Wang YP, Zhao SS, et al. Lactobacillus plantarum inoculants delay spoilage of high moisture alfalfa silages by regulating bacterial community composition[J]. Frontiers in Microbiology, 2020, 11:1989-1989.
doi: 10.3389/fmicb.2020.01989 URL |
[16] | 王媛, 王雁萍, 等. 植物乳杆菌对苜蓿青贮发酵品质和细菌菌群的影响[J]. 郑州大学学报:理学版, 2021, 53(1):114-119. |
Wang Y, Wang YP, Zhao SS, et al. Effects of Lactobacillus plantarum on fermentation quality and bacterial flora in alfalfa silage[J]. Journal of Zhengzhou University:Natural Science Edition, 2021, 53(1):114-119. | |
[17] |
Zhang Q, Yu Z, et al. Effects of inoculants and environmental temperature on fermentation quality and bacterial diversity of alfalfa silage[J]. Animal Science Journal, 2018, 89(8):1085-1092.
doi: 10.1111/asj.12961 pmid: 29845704 |
[18] | Cai YM, Kumai S, et al. Comparative studies of lactobacilli and enterococci associated with forage crops as silage inoculants[J]. Japanese Society of Animal Science, 1999, 70(4):188-194. |
[19] |
Victor LN, Brenda KS, William MR, et al. Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber[J]. Animal Feed Science and Technology, 2007, 145(1):122-135.
doi: 10.1016/j.anifeedsci.2007.06.039 URL |
[20] |
Guo XS, Ke WC, Ding WR, et al. Profiling of metabolome and bacterial community dynamics in ensiled Medicago sativa inoculated without or with Lactobacillus plantarum or Lactobacillus buchneri[J]. Scientific Reports, 2018, 8(1):359-371.
doi: 10.1038/s41598-017-18722-y URL |
[21] |
Kang TW, Adesogan AT, Kim SC, et al. Effects of an esterase-producing inoculant on fermentation, aerobic stability, and neutral detergent fiber digestibility of corn silage[J]. Journal of Dairy Science, 2009, 92(2):732-738.
doi: 10.3168/jds.2007-0780 pmid: 19164685 |
[22] |
Jin L, Duniere L, et al. Impact of ferulic acid esterase producing lactobacilli and fibrolytic enzymes on conservation characteristics, aerobic stability and fiber degradability of barley silage[J]. Animal Feed Science and Technology, 2015, 207:62-74.
doi: 10.1016/j.anifeedsci.2015.06.011 URL |
[23] |
Jin L, Duniere L, Lynch JP, et al. Impact of ferulic acid esterase-producing lactobacilli and fifibrolytic enzymes on ensiling and digestion kinetics of mixed small-grain silage[J]. Grass and Forage Science, 2017, 72(1):80-92.
doi: 10.1111/gfs.2017.72.issue-1 URL |
[24] | Wambacq E, Latre JP, Haesaert G. The effect of Lactobacillus buchneri inoculation on the aerobic stability and fermentation characteristics of alfalfa-ryegrass, red clover and maize silage[J]. Agriculture and Food Science, 2013, 22(1):127-136. |
[25] | 万江春, 封帆, 谢开云, 等. 同/异质型乳酸菌对苏丹草青贮饲料有氧暴露过程中酵母菌群落的影响[J]. 饲料研究, 2021(7):119-123. |
Wan JC, Feng F, Xie KY, et al. Effect of homo-and hetero-fermentative lactic acid bacteria on yeast community during the aerobic exposure process of sudangrass silage[J]. Feed Research, 2021(7):119-123. | |
[26] |
Si HZ, Liu HL, Li ZP, et al. Effect of lactobacillus plantarum and Lactobacillus buchneri addition on fermentation, bacterial community and aerobic stability in lucerne silage[J]. Animal Production Science, 2019, 59(8):1528-1536.
doi: 10.1071/AN16008 URL |
[27] |
Pascal D, Julien T, Frédérique C. Dynamic succession of microbiota during ensiling of whole plant corn following inoculation with Lactobacillus buchneri and Lactobacillus hilgardii alone or in combination[J]. Microorganisms, 2019, 7(12):595.
doi: 10.3390/microorganisms7120595 URL |
[28] |
Oude Elferink SJ, Krooneman J, Gottschal JC, et al. Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri[J]. Applied and Environmental Microbiology, 2001, 67(1):125-132.
pmid: 11133436 |
[29] |
Xu DM, Ding WR, et al. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri[J]. Frontiers in Microb, 2018, 9:3299
doi: 10.3389/fmicb.2018.03299 URL |
[30] | 王雨, 张庆, 玉柱. 青贮中有机化学添加剂及其作用效果的研究进展[J]. 中国畜牧杂志, 2014, 50(7):93-97. |
Wang Y, Zhang Q, Yu Z. Research advances on organic chemical additives in silage[J]. Chin J Anim Sci, 2014, 50(7):93-97. | |
[31] | 张适. 乳酸菌和外源酶制剂对全株玉米青贮品质影响的研究[D]. 通辽:内蒙古民族大学, 2020. |
Zhang S. Study on the effect of lactic acid bacteria and exogenous enzymes on the quality of whole corn silage[D]. Tongliao:Inner Mongolia University for Nationalities, 2020. | |
[32] | 尉小强, 罗仕伟, 哈志刚, 等. 添加乳酸菌和有机酸制剂对全株玉米青贮品质、微生物数量和有氧稳定性的影响[J]. 草学, 2018(S1):63-68. |
Yu XQ, Luo SW, Ha ZG, et al. The Effects of fermentation quality, microbe quantity and aerobic stability of whole-plant corn by adding latic acid bacteria and organic acid preparations[J]. Journal of Grassland and Forage Science, 2018(S1):63-68. | |
[33] |
Kleinschmit DH, Schmidt RJ, Kung L. The effects of various antifungal additives on the fermentation and aerobic stability of corn silage[J]. J Dairy Sci, 2005, 88(6):2130-2139.
pmid: 15905443 |
[34] |
Yuan XJ, Wen AY, Desta ST, et al. Effects of sodium diacetate on the fermentation profile, chemical composition and aerobic stability of alfalfa silage[J]. Asian-Australasian Journal of Animal Sciences, 2017, 30(6):804-810.
doi: 10.5713/ajas.16.0773 URL |
[35] | Hingston AR, David AC. The effect of type of silo and formic acid preservation on the nutritive value of barley, wheat and oat silages for growing hereford steers[J]. NRC Research Press Ottawa, Canada, 1982, 62(1):155-162. |
[36] |
Jiang FG, Cheng HJ, Liu D, et al. Treatment of whole-plant corn silage with lactic acid bacteria and organic acid enhances quality by elevating acid content, reducing pH, and inhibiting undesirable microorganisms[J]. Front Microb, 2020, 11:593088.
doi: 10.3389/fmicb.2020.593088 URL |
[37] | 陆永祥, 赵嫚, 陈良寅, 等. 布氏乳杆菌和甲酸对青藏高原不同物候期燕麦青贮饲料发酵品质和细菌群落的影响[J]. 草地学报, 2020, 28(6):1736-1743. |
Lu YX, Zhao M, Chen LY, et al. Effects of Lactobacillus brucei and formic acid addition on fermentation quality and bacterial community of oat silage of different harvest in the Tibetan Plateau[J]. Acta Agrestia Sinica, 2020, 28(6):1736-1743. | |
[38] | Britt DG, Huber JT, Rogers AL. Fungal growth and acid production during fermentation and refermentation of organic acid treated corn silages[J]. Elsevier, 1975, 58(4):532-539 |
[39] | 李晓红, 罗红霞, 等. 有机酸盐在青贮乳酸发酵中的抑菌效果研究[J]. 安徽农业大学学报, 2018, 45(3):416-421. |
Li XH, Luo HX, Ju RH, et al. Antibacterial effect of different organic acid salt combinations[J]. Journal of Anhui Agricultural University, 2018, 45(3):416-421. | |
[40] |
Lynch JP, Baah J, Beauchemin KA. Conservation, fiber digestibility, and nutritive value of corn harvested at 2 cutting heights and ensiled with fibrolytic enzymes, either alone or with a ferulic acid esterase-producing inoculant[J]. Journal of dairy Science, 2015, 98(2):1214-1224.
doi: 10.3168/jds.2014-8768 pmid: 25483202 |
[41] |
Hu ZF, Ma DY, Niu HX, et al. Enzyme additives influence bacterial communities of medicago sativa silage as determined by Illumina sequencing[J]. AMB Express, 2021, 11(1):1-11.
doi: 10.1186/s13568-020-01157-6 URL |
[42] | 郑明扬, 吴硕, 郭香, 等. 添加乳酸菌和纤维素酶对砂仁叶青贮品质的影响[J]. 草地学报, 2021, 29(5):1113-1117. |
Zheng MY, Wu S, Guo X, et al. Effect of lactobacillus and cellulase on the silage quality of amomum villosum leaves[J]. Acta Agrestia Sinica, 2021, 29(5):1113-1117. | |
[43] | 黄媛, 代胜, 梁龙飞, 等. 不同添加剂对构树青贮饲料发酵品质及微生物多样性的影响[J]. 动物营养学报, 2021, 33(3):1607-1617. |
Huang Y, Dai S, liang LF, et al. Effects of different additives on fermentation quality and microbial diversity of paper mulberry silage[J]. Chin J Anim Nutr, 2021, 33(3):1607-1617. | |
[44] | 刘菲菲. 混合比例和生物酶对酒糟与麦麸混贮品质及微生物菌群影响[D]. 兰州:兰州理工大学, 2019. |
Liu FF. Effects of mixing ratio and bioenzymes on storage quality and microbial community of grain stillage and wheat bran[D]. Lanzhou:LanZhou University of Technology, 2019. | |
[45] |
Young KM, Lim JM, Der Bedrosian MC, et al. Effect of exogenous protease enzymes on the fermentation and nutritive value of corn silage[J]. J Dairy Sci, 2012, 95(11):6687-6694.
doi: 10.3168/jds.2012-5628 pmid: 22981573 |
[46] |
Windle MC, Walker N, Kung L, et al. Effects of an exogenous protease on the fermentation and nutritive value of corn silage harvested at different dry matter contents and ensiled for various lengths of time.[J]. J Dairy Sci, 2014, 97(5):3053-3060.
doi: 10.3168/jds.2013-7586 pmid: 24630660 |
[47] | 王小娟, 吴海庆. 糖蜜在反刍动物生产及青贮饲料中的应用研究进展[J]. 广东饲料, 2020, 29(4):31-33. |
Wang XJ, Wu HQ. Research progress on application of molasses in ruminant production and silage[J]. Guangdong Feed, 2020, 29(4):31-33. | |
[48] |
Luo RB, Zhang YD, Wang FG, et al. Effects of sugar cane molasses addition on the fermentation quality, microbial community, and tastes of alfalfa silage[J]. Animals, 2021, 11(2):355.
doi: 10.3390/ani11020355 URL |
[49] |
Wu JX, Zong C, Shao T, et al. Clarifying the relationships among bacteria, lipid-related enzymes, main polyunsaturated fatty acids and fat-soluble vitamins in alfalfa(Medicago sativa L.)silage using various sugar supplementations[J]. Animal Feed Science and Technology, 2020, 272:114799.
doi: 10.1016/j.anifeedsci.2020.114799 URL |
[1] | 梁成刚, 汪燕, 李天, 大杉立, 青木直大. SP1调控碳水化合物分配对穗形态的影响[J]. 生物技术通报, 2023, 39(5): 152-159. |
[2] | 任海伟, 孙一帆, 任雨薇, 郭晓鹏, 潘立超, 张丙云, 李金平. 基于文献计量的青贮添加剂研究进展[J]. 生物技术通报, 2022, 38(8): 261-274. |
[3] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[4] | 陈梦言, 白洁, 柯文灿, 许冬梅, 艾琳, 郭旭生. 青贮饲料微生物群落组成与功能研究进展[J]. 生物技术通报, 2021, 37(9): 11-23. |
[5] | 王婷, 杨阳, 李金萍, 杜坤. 转基因作物对土壤微生物群落影响的研究进展[J]. 生物技术通报, 2021, 37(9): 255-265. |
[6] | 田静, 张建国. 植物表面乳酸菌分布研究进展[J]. 生物技术通报, 2021, 37(9): 3-10. |
[7] | 徐进益, 那彬彬, 刘顺, 陈超, 孙红, 郑玉龙. 青贮饲料的优良乳酸菌及其应用[J]. 生物技术通报, 2021, 37(9): 39-47. |
[8] | 张颖超, 尹守亮, 王一炜, 王学凯, 杨富裕. 木本饲料青贮研究进展[J]. 生物技术通报, 2021, 37(9): 48-57. |
[9] | 姜富贵, 成海建, 魏晨, 张召坤, 苏文政, 时光, 宋恩亮. 糖蜜添加量对杂交构树青贮发酵品质和微生物多样性的影响[J]. 生物技术通报, 2021, 37(9): 68-76. |
[10] | 王琦, 武之绚, 陈钟玲, 吴白乙拉, 胡宗福, 牛化欣. 副干酪乳杆菌对青贮苜蓿有氧暴露品质和细菌多样性的影响[J]. 生物技术通报, 2021, 37(9): 77-85. |
[11] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[12] | 赵雅茹, 许庆方, 高文俊, 郭刚, 陈雷, 玉柱. 抑霉乳酸菌脱毒特性及青贮应用的研究[J]. 生物技术通报, 2021, 37(9): 95-105. |
[13] | 迪力热巴·阿不都肉苏力, 穆耶赛尔·奥斯曼, 祖力胡玛尔·肉孜, 马勤, 雷瑞峰, 安登第. 盐碱土壤微生物多样性与生物改良研究进展[J]. 生物技术通报, 2021, 37(10): 225-233. |
[14] | 黄婷, 方源, 冯舟, 沈和, 聂勇, 郑鑫, 汪家权, 许子牧. 高通量测序技术解析中学校园细菌群落的特征组成[J]. 生物技术通报, 2020, 36(8): 96-103. |
[15] | 谢宪, 梁军, 张铭, 胡瑞瑞, 程元, 张星耀. 赤松枯梢病叶内生真菌多样性研究[J]. 生物技术通报, 2020, 36(2): 119-125. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||