生物技术通报 ›› 2022, Vol. 38 ›› Issue (2): 44-56.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0295
时雅倩(), 申亚茹, 陈漫影, 何淑敏, 刘予涵, 何天楠, 陈清西, 文志丰()
收稿日期:
2021-05-14
出版日期:
2022-02-26
发布日期:
2022-03-09
作者简介:
时雅倩,女,硕士研究生,研究方向:果树抗病;E-mail: 基金资助:
SHI Ya-qian(), SHEN Ya-ru, CHEN Man-ying, HE Shu-min, LIU Yu-han, HE Tian-nan, CHEN Qing-xi, WEN Zhi-feng()
Received:
2021-05-14
Published:
2022-02-26
Online:
2022-03-09
摘要:
探索黄毛草莓FnFBOX1参与草莓胶孢炭疽菌(Colletotrichum gloeosporioides)侵染过程中的抗病反应和pFnFBOX1启动子的转录活性,为研究FnFBOX1抗炭疽病功能奠定基础。以黄毛草莓(Fragaria nilgerrensis Schidl.)为研究对象,通过RT-PCR技术克隆FnFBOX1的cDNA序列。通过氨基酸序列比对、进化树分析、亚细胞定位、启动子克隆并构建瞬时表达载体、组织特异性表达分析,最后用荧光定量分析了抗病的黄毛草莓和感病的‘妙香 3’草莓在水杨酸(SA)和胶孢炭疽菌胁迫下FnFBOX1的表达水平变化。结果表明,FnFBOX1的ORF全长为1 227 bp,编码408个氨基酸。氨基酸序列比对和进化树分析发现FnFBOX1与森林草莓(Fragaria vesca)FvFBOX1同源性最高。亚细胞定位结果显示FnFBOX1定位于细胞核。克隆的FnFBOX1启动子长度为821 bp,构建pFnFBOX1的瞬时表达载体pFnFBOX1∷GUS。瞬时转化烟草后对其进行组织化学染色分析和GUS活性测定,结果表明,pFnFBOX1具有驱动下游基因转录的活性,且胶孢炭疽菌和SA可促进FnFBOX1启动子启动的GUS活性的提高。荧光定量PCR分析表明,FnFBOX1在黄毛草莓的不同组织中均有表达。抗病黄毛草莓和感病‘妙香 3’草莓均进行接种胶孢炭疽菌和喷施SA处理,结果显示,黄毛草莓接种胶孢炭疽菌12 h后FnFBOX1表达量达到最高,是0 h的6.3倍;SA处理24 h时,其表达量达到最高,是0 h的7.9倍。‘妙香 3’草莓也响应胶孢炭疽菌和SA处理,但FBOX1表达量比黄毛草莓低。
时雅倩, 申亚茹, 陈漫影, 何淑敏, 刘予涵, 何天楠, 陈清西, 文志丰. 黄毛草莓F-box蛋白基因FnFBOX1及其启动子的克隆和表达分析[J]. 生物技术通报, 2022, 38(2): 44-56.
SHI Ya-qian, SHEN Ya-ru, CHEN Man-ying, HE Shu-min, LIU Yu-han, HE Tian-nan, CHEN Qing-xi, WEN Zhi-feng. Molecular Cloning and Expression Analysis of a F-box Protein Gene FnFBOX1 and Its Promoter from Fragaria nilgerrensis[J]. Biotechnology Bulletin, 2022, 38(2): 44-56.
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物用途Primer function |
---|---|---|
FnFBOX1 -F | ATGCTGTTAACTACTCCTGACCAT | ORF的扩增 ORF amplification |
FnFBOX1-R | TCAAACACAAGACAGAGTCTCTAT | |
FnFBOX1-real-F | CGCCTTCCCGTCAAATCTCT | 实时荧光定量PCR Quantitative real-time PCR |
FnFBOX1-real-R | TTCCGGCTCTTTCCCAACTC | |
FnActin-real-F | GCCAGAAAGATGCTTATGTCGGT | 黄毛草莓内参基因 Actin gene in F. nilgerrensis |
FnActin -real-R | TGGGGCAACACGAAGCTCAT | |
FaActin-real-F | CGAGGCTCAATCCAAAAGAG | 栽培草莓内参基因 Actin gene in F.xananassa |
FaActin-real-R | TGGCCACATACATAGCAGGA | |
P-FnFBOX1-F | CGATCGAGTATCCACATTTAAACA | 启动子克隆 Promoter cloning |
P-FnFBOX1-R | TCATTGGCTTGGGATATAATGAAG | |
P-FnFBOX1-GUS-F | CGGGATCCCGCGATCGAGTATCCACATTTAAACA | 融合GUS载体构建 Infusion GUS vector |
P-FnFBOX1-GUS-R | CCCAAGCTTGGGTCATTGGCTTGGGATATAATGAAG | |
FnFBOX1-YFP-F | ATGCTGTTAACTACTCCTGACCA | 融合YFP载体构建 Infusion YFP vector |
FnFBOX1-YFP-R | AACACAAGACAGAGTCTCTATGAA |
表1 PCR引物信息
Table 1 Information for PCR primers
引物名称Primer name | 引物序列Primer sequence(5'-3') | 引物用途Primer function |
---|---|---|
FnFBOX1 -F | ATGCTGTTAACTACTCCTGACCAT | ORF的扩增 ORF amplification |
FnFBOX1-R | TCAAACACAAGACAGAGTCTCTAT | |
FnFBOX1-real-F | CGCCTTCCCGTCAAATCTCT | 实时荧光定量PCR Quantitative real-time PCR |
FnFBOX1-real-R | TTCCGGCTCTTTCCCAACTC | |
FnActin-real-F | GCCAGAAAGATGCTTATGTCGGT | 黄毛草莓内参基因 Actin gene in F. nilgerrensis |
FnActin -real-R | TGGGGCAACACGAAGCTCAT | |
FaActin-real-F | CGAGGCTCAATCCAAAAGAG | 栽培草莓内参基因 Actin gene in F.xananassa |
FaActin-real-R | TGGCCACATACATAGCAGGA | |
P-FnFBOX1-F | CGATCGAGTATCCACATTTAAACA | 启动子克隆 Promoter cloning |
P-FnFBOX1-R | TCATTGGCTTGGGATATAATGAAG | |
P-FnFBOX1-GUS-F | CGGGATCCCGCGATCGAGTATCCACATTTAAACA | 融合GUS载体构建 Infusion GUS vector |
P-FnFBOX1-GUS-R | CCCAAGCTTGGGTCATTGGCTTGGGATATAATGAAG | |
FnFBOX1-YFP-F | ATGCTGTTAACTACTCCTGACCA | 融合YFP载体构建 Infusion YFP vector |
FnFBOX1-YFP-R | AACACAAGACAGAGTCTCTATGAA |
图2 黄毛草莓FnFBOX1的二级结构预测(A)与信号肽预测(B) A:红色表示β-折叠,蓝色表示α-螺旋,紫色表示随机卷曲,绿色表示β-转角
Fig. 2 Prediction of secondary structure of FnFBOX1 protein in F. nilgerrensis(A)and signal peptide prediction(B) A:The color red,blue,purple and green represent beta-sheet,alpha helix,random coil and beta-turn,respectively
图3 黄毛草莓FnFBOX1与其他植物氨基酸序列的比对和保守结构域分析 FnFBOX1:黄毛草莓,MN709780;FvFBOX1:森林草莓,XP_024192373;PaFBOX1:樱桃,XP_008223808;RcaFBOX1:月季,XP_021825170。划线部分为F-box保守结构域
Fig. 3 Alignment of FnFBOX1 in F. nilgerrensis with other plant amino acid sequences and analysis of conserved domains FnFBOX1:Fragaria nilgerrensis,MN709780;FvFBOX1:Fragaria vesca,XP_024192373;PaFBOX1:Prunus avium,XP_008223808;RcaFBOX1:Prunus avium,XP_021825170. The underlined part is the F-box conserved domain
图4 黄毛草莓FnFBOX1和其他植物FBOX1序列构建的系统进化树 甜橙:Camellia sinensis,KDO52565;可可:Theobroma cacao,EOY22796;木薯:Manihotesculenta,XP_021634763;黄毛草莓:Fragarianilgerrensis,MN709780;森林草莓:Fragariavesca,XP_004301401;月季:Rosa chinensis,XP_024192373;苹果:Malus domestica,XP_008351366;樱桃:Prunusavium,XP_021825170;巨桉:Eucalyptus grandis,XP_010050919;核桃:Juglans regia,XP_018807608
Fig. 4 Phylogenetic tree of FnFBOX1 in F. nilgerrensis with FBOX1 of other plant species
图8 黄毛草莓FnFBOX1启动子融合GUS载体构建 A:BamH I和Hind III双酶切的pMDTM-20T-pFnBOX1重组质粒(M:DL5 000 marker,1:重组质粒);B:BamH I和Hind III双酶切0380∷GUS(M:DL5 000 marker,1和2:0380∷GUS双酶切);C:BamH I和Hind III双酶切pFnFBOX1∷GUS(M:DL5 000 marker,1和2:pFnFBOX1∷GUS双酶切
Fig. 8 Construction of pFnFBOX1∷GUS fusion vector in F. nilgerrensis A:BamH I and Hind III double digest the pMDTM-20T-pFnBOX1(M:DL5 000 marker;1:recombined plasmid);B:BamH I and Hind III double digest the 0380∷GUS(M:DL5 000 marker;1-2:0380∷GUS double digest);C:BamH I and Hind III double digest the pFnFBOX1∷GUS(M:DL5 000 marker;1-2:pFnFBOX1∷GUS double digest)
图9 黄毛草莓启动子pFnFBOX1∷GUS载体转化烟草后染色图及GUS酶活测定 A:pCaMV35S∷GUS载体转化烟草后染色图;B:pC0380∷GUS载体转化烟草后染色图;C:pFnFBOX1∷GUS载体转化烟草后染色图;D:烟草瞬时表达GUS酶活性
Fig. 9 Staining and GUS activity after pFnFBOX1∷GUS vector transformed into tobacco A:Staining after pCaMV35S∷GUS vector was transformed into tobacco. B:Staining after pC0380∷GUS vector was transformed into tobacco. C:Staining after pFnFBOX1∷GUS vector was transformed into tobacco. D:GUS activity in the leaves of tobacco transiently expressing the pCaMV35S∷GUS or pFnFBOX1∷GUS
图10 不同处理及黄毛草莓不同组织中FnFBOX1的表达 A:黄毛草莓叶片接种胶孢炭疽菌FnFBOX1的表达;B:SA处理后FnFBOX1的表达;C:黄毛草莓不同组织中FnFBOX1的表达。3次生物学重复和3次技术重复,标准误显示在柱形图上,星号表示处理系和对照之间的差异(*P<0.05,**P<0.01)
Fig. 10 Expressions of FnFBOX1 after different treatments and in different tissues of F. nilgerrensis A:Expression of FnFBOX1after the leaves of F. nilgerrensis inoculated with C. gloeosporioides. B:Expression of FnFBOX1 after SA treatment. C:Expression of FnFBOX1 in different tissues of F. nilgerrensis. There are 3 biological and technical replicates,the standard error is displayed on the bar graph,and the asterisk indicates the difference between the treatment line and the control(*P<0.05,**P<0.01)
图11 ‘妙香3’叶片接种胶孢炭疽菌和SA处理后黄毛草莓FBOX1的表达 A:‘妙香3’草莓叶片接种胶孢炭疽菌后FnFBOX1的相对表达;B:SA处理后FnFBOX1的相对表达。3次生物学重复和3次技术重复,标准误显示在柱形图上,小写字母表示处理系和对照之间的差异(P<0.05)
Fig. 11 Expressions of FBOX1 in F. nilgerrensis after inoculation with C. gloeosporioides and SA treatment in ‘Miaoxiang 3’ leaves A:Expression of FnFBOX1 after the leaves of ‘Miaoxiang 3’ inoculated with C. gloeosporioides. B:Expression of FnFBOX1 after SA treatment. There are 3 biological and technical replicates,the standard error is displayed on the bar graph,and lowercase letters indicate the difference between the treatment line and the control(P<0.05)
[1] |
Basu A, Nguyen A, Betts NM, et al. Strawberry as a functional food:an evidence-based review[J]. Crit Rev Food Sci Nutr, 2014, 54(6):790-806.
doi: 10.1080/10408398.2011.608174 URL |
[2] | 张运涛, 雷家军, 赵密珍, 等. 新中国果树科学研究70年——草莓[J]. 果树学报, 2019, 36(10):1441-1452. |
Zhang YT, Lei JJ, Zhao MZ, et al. Fruit scientific research in New China in the past 70 years:Strawberry[J]. J Fruit Sci, 2019, 36(10):1441-1452. | |
[3] | 邓明琴, 雷家军. 中国果树志-草莓卷[M]. 北京: 中国林业出版社, 2005. |
Deng MQ, Lei JJ. Chinese Fruit tree:Strawberry[M]. Beijing: China Forestry Publishing House, 2005. | |
[4] |
Zhang JX, Lei YY, Wang BT, et al. The high-quality genome of diploid strawberry(Fragaria nilgerrensis)provides new insights into anthocyanin accumulation[J]. Plant Biotechnol J, 2020, 18(9):1908-1924.
doi: 10.1111/pbi.v18.9 URL |
[5] | 刁霞. 黄毛草莓(Fragaria nilgerrensis Schldl)EST-SSR引物开发及遗传多样性研究[D]. 昆明:云南大学, 2019:15-30. |
Diao X. EST-SSR primer design and analysis for the genetic diversity of Fragaria nilgerrensis Schldl.[D]. Kunming:Yunnan University, 2019:15-30. | |
[6] |
Risseeuw EP, Daskalchuk TE, Banks TW, et al. Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis[J]. Plant J, 2003, 34(6):753-767.
pmid: 12795696 |
[7] | 许涛, 夏冬健, 万菁, 等. F-box蛋白参与植物逆境胁迫研究进展[J]. 生物技术通报, 2021, 37(12):1-7. |
Xu T, Xia DJ, Wan J, et al. Research progress of F-box protein involved in plant stress[J]. Biotech Bull, 2021, 37(12):1-7. | |
[8] |
Xu G, Ma H, Nei M, et al. Evolution of F-box genes in plants:different modes of sequence divergence and their relationships with functional diversification[J]. PNAS, 2009, 106(3):835-840.
doi: 10.1073/pnas.0812043106 URL |
[9] | 吴丹, 唐冬英, 李新梅, 等. F-box蛋白在植物生长发育中的功能研究进展[J]. 生命科学研究, 2015, 19(4):362-367. |
Wu D, Tang DY, Li XM, et al. Progresses on F-box protein function in plant growth and development[J]. Life Sci Res, 2015, 19(4):362-367. | |
[10] | 许媛, 李铃仙, 于秀梅, 等. F-box蛋白在植物抗逆境胁迫中的功能[J]. 植物生理学报, 2015, 51(7):1003-1008. |
Xu Y, Li LX, Yu XM, et al. The functions of F-box protein in plant resistance to stress[J]. Plant Physiol J, 2015, 51(7):1003-1008. | |
[11] |
Kim HS, Delaney TP. Arabidopsis SON1 is an F-box protein that regulates a novel induced defense response independent of both salicylic acid and systemic acquired resistance[J]. Plant Cell, 2002, 14(7):1469-1482.
doi: 10.1105/tpc.001867 URL |
[12] |
Cao Y, Yang Y, Zhang H, et al. Overexpression of a rice defense-related F-box protein gene OsDRF1 in tobacco improves disease resistance through potentiation of defense gene expression[J]. Physiol Plant, 2008, 134(3):440-452.
doi: 10.1111/ppl.2008.134.issue-3 URL |
[13] |
Fradin EF, Zhang Z, Juarez Ayala JC, et al. Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1[J]. Plant Physiol, 2009, 150(1):320-332.
doi: 10.1104/pp.109.136762 URL |
[14] |
Maldonado-Calderón MT, Sepúlveda-García E, Rocha-Sosa M. Characterization of novel F-box proteins in plants induced by biotic and abiotic stress[J]. Plant Sci, 2012, 185/186:208-217.
doi: 10.1016/j.plantsci.2011.10.013 URL |
[15] |
Li X, Sun Y, Liu N, et al. Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum[J]. Plant Sci, 2019, 284:127-134.
doi: 10.1016/j.plantsci.2019.04.013 URL |
[16] |
Xia R, Ye S, Liu Z, et al. Novel and recently evolved MicroRNA clusters regulate expansive F-BOX gene networks through phased small interfering RNAs in wild diploid strawberry[J]. Plant Physiol, 2015, 169(1):594-610.
doi: 10.1104/pp.15.00253 URL |
[17] | 何淑敏. 野生黄毛草莓FnNAC7基因克隆及抗炭疽病功能初步分析[D]. 福州:福建农林大学, 2019:11-30. |
He SM. Cloning of FnNAC7 and preliminary function analysis of resistance to anthracnose wild strawberry[D]. FuZhou:Fujian Agriculture and Forestry University, 2019. 11-30. | |
[18] | Wen Z, Yao L, Wan R, et al. Ectopic expression in Arabidopsis thaliana of an NB-ARC encoding putative disease resistance gene from wild Chinese Vitis pseudoreticulata enhances resistance to phytopathogenic fungi and bacteria[J]. Front Plant Sci, 2015, 6:1087. |
[19] | 曾丽兰. 龙眼胚性愈伤组织SOD的表达分析及启动子功能鉴定[D]. 福州:福建农林大学, 2013. |
Zeng LL. Characterization of SOD promoters and expression analysis of SOD genes of the embryogenic callus in Dimocarpus longan Lour.[D]. Fuzhou:Fujian Agriculture and Forestry University, 2013. | |
[20] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods, 2001, 25(4):402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[21] |
Woo HR, Chung KM, Park JH, et al. ORE9, an F-box protein that regulates leaf senescence in Arabidopsis[J]. Plant Cell, 2001, 13(8):1779-1790.
pmid: 11487692 |
[22] |
Leclercq J, Adams-Phillips LC, Zegzouti H, et al. LeCTR1, a tomato CTR1-like gene, demonstrates ethylene signaling ability in Arabidopsis and novel expression patterns in tomato[J]. Plant Physiol, 2002, 130(3):1132-1142.
doi: 10.1104/pp.009415 pmid: 12427980 |
[23] |
Rameneni JJ, Dhandapani V, Paul P, et al. F-box genes in Brassica rapa:genome-wide identification, structural characterization, expressional validation, and comparative analysis[J]. Plant Mol Biol Report, 2018, 36(3):500-517.
doi: 10.1007/s11105-018-1083-1 URL |
[24] |
Wang J, Yao W, Wang L, et al. Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis[J]. Plant Sci, 2017, 263:142-155.
doi: S0168-9452(17)30271-6 pmid: 28818370 |
[25] |
Jia F, Wu B, Li H, et al. Genome-wide identification and characterisation of F-box family in maize[J]. Mol Genet Genomics, 2013, 288(11):559-577.
doi: 10.1007/s00438-013-0769-1 URL |
[26] |
Hu Z, Keçeli MA, Piisilä M, et al. F-box protein AFB4 plays a crucial role in plant growth, development and innate immunity[J]. Cell Res, 2012, 22(4):777-781.
doi: 10.1038/cr.2012.12 URL |
[27] |
van den Burg HA, Tsitsigiannis DI, Rowland O, et al. The F-box protein ACRE189/ACIF1 regulates cell death and defense responses activated during pathogen recognition in tobacco and tomato[J]. Plant Cell, 2008, 20(3):697-719.
doi: 10.1105/tpc.107.056978 URL |
[28] | 魏春茹, 孟钰玉, 范润侨, 等. 小麦F-box/Kelch类基因TaFKOR23的抗逆相关表达模式及分子互作蛋白鉴定[J]. 植物遗传资源学报, 2020, 21(3):695-705. |
Wei CR, Meng YY, Fan RQ, et al. Stress-related expression profile of F-box/kelch gene TaFKOR23 in wheat and molecular characterization of the interacting target protein[J]. J Plant Genet Resour, 2020, 21(3):695-705. | |
[29] | 贾琪, 孙松, 孙天昊, 等. F-box蛋白家族在植物抗逆响应中的作用机制[J]. 中国生态农业学报, 2018, 26(8):1125-1136. |
Jia Q, Sun S, Sun TH, et al. Mechanism of F-box protein family in plant resistance response to environmental stress[J]. Chin J Eco Agric, 2018, 26(8):1125-1136. | |
[30] | 侯鸿敏, 王浩, 殷向静, 等. 华东葡萄抗白粉病VpMYBR1基因表达与功能分析[J]. 中国农业科学, 2013, 46(7):1408-1418. |
Hou HM, Wang H, Yin XJ, et al. Expression and functional analysis of VpMYBR1 gene resistant to Uncinulanecator from Vitis pseudoreticulata[J]. Sci Agric Sin, 2013, 46(7):1408-1418. | |
[31] |
Chanda B, Venugopal SC, Kulshrestha S, et al. Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis[J]. Plant Physiol, 2008, 147(4):2017-2029.
doi: 10.1104/pp.108.121335 URL |
[32] | 霍冬英, 郑炜君, 李盼松, 等. 谷子F-box家族基因的鉴定、分类及干旱响应[J]. 作物学报, 2014, 40(9):1585-1594. |
Huo DY, Zheng WJ, Li PS, et al. Identification, classification, and drought response of F-box gene family in foxtail millet[J]. Acta Agron Sin, 2014, 40(9):1585-1594.
doi: 10.3724/SP.J.1006.2014.01585 URL |
|
[33] | 李虎滢. 小麦F-box家族的全基因组鉴定及TaFBL14和TaSKP2A的抗逆相关表达分析[D]. 保定:河北农业大学, 2019:4-5. |
Li HY. Genome-wide identification of wheat F-box family and expression analysis of TaFBL14 and TaSKP2A related to stress resistance[D]. Baoding:Hebei Agricultural University, 2019:4-5. | |
[34] | 任逸秋. 胡杨CDPK等3个耐盐基因的克隆与功能分析[D]. 杨凌:西北农林科技大学, 2017. |
Ren YQ. Coloning and functional analysis of three salt tolerance genes in Populus euphratica[D]. Yangling:Northwest A & F University, 2017. | |
[35] | 刘翠花. 烟草NtVQ35基因的鉴定及其抗青枯病基本功能研究[D]. 重庆:西南大学, 2020. |
Liu CH. Identification of NtVQ35 gene in Nicotiana tabacum and preliminary study on its function against tobacco bacterial wilt disease[D]. Chongqing:Southwest University, 2020. | |
[36] |
Wen ZF, Yao LP, Singer SD, et al. Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria[J]. Plant Physiol Biochem, 2017, 112:346-361.
doi: 10.1016/j.plaphy.2017.01.017 URL |
[1] | 刘玉玲, 王梦瑶, 孙琦, 马利花, 朱新霞. 启动子RD29A对转雪莲SikCDPK1基因烟草抗逆性的影响[J]. 生物技术通报, 2023, 39(9): 168-175. |
[2] | 王佳蕊, 孙培媛, 柯瑾, 冉彬, 李洪有. 苦荞糖基转移酶基因FtUGT143的克隆及表达分析[J]. 生物技术通报, 2023, 39(8): 204-212. |
[3] | 孙明慧, 吴琼, 刘丹丹, 焦小雨, 王文杰. 茶树CsTMFs的克隆与表达分析[J]. 生物技术通报, 2023, 39(7): 151-159. |
[4] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[7] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[8] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[9] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[10] | 杨岚, 张晨曦, 樊学伟, 王阳光, 王春秀, 李文婷. 鸡 BMP15 基因克隆、表达模式及启动子活性分析[J]. 生物技术通报, 2023, 39(4): 304-312. |
[11] | 刘思佳, 王浩楠, 付宇辰, 闫文欣, 胡增辉, 冷平生. ‘西伯利亚’百合LiCMK基因克隆及功能分析[J]. 生物技术通报, 2023, 39(3): 196-205. |
[12] | 王涛, 漆思雨, 韦朝领, 王艺清, 戴浩民, 周喆, 曹士先, 曾雯, 孙威江. CsPPR和CsCPN60-like在茶树白化叶片中的表达分析及互作蛋白验证[J]. 生物技术通报, 2023, 39(3): 218-231. |
[13] | 庞强强, 孙晓东, 周曼, 蔡兴来, 张文, 王亚强. 菜心BrHsfA3基因克隆及其对高温胁迫的响应[J]. 生物技术通报, 2023, 39(2): 107-115. |
[14] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[15] | 葛雯冬, 王腾辉, 马天意, 范震宇, 王玉书. 结球甘蓝PRX基因家族全基因组鉴定与逆境条件下的表达分析[J]. 生物技术通报, 2023, 39(11): 252-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||