生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 143-152.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1127
呼艳姣1,2(), 陈美凤1, 强瑀1, 李海燕1, 刘静1,2, 秦樊鑫1,2()
收稿日期:
2021-09-02
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
秦樊鑫,男,博士,教授,研究方向:生态环境污染控制与恢复;E-mail: qinfanxin@126.com作者简介:
呼艳姣,女,硕士研究生,研究方向:植物化学;E-mail: 362481828@qq.com
基金资助:
HU Yan-jiao1,2(), CHEN Mei-feng1, QIANG Yu1, LI Hai-yan1, LIU Jing1,2, QIN Fan-xin1,2()
Received:
2021-09-02
Published:
2022-04-26
Online:
2022-05-06
摘要:
研究镉、锌、硒及不同组合复合添加对水稻种子萌发、植株生长发育和不同部位镉含量的影响,揭示锌、硒、锌硒交互作用对水稻镉毒害的缓解机制。以水稻品种南粳9108为研究对象,采用萌发试验和水培试验,测定其萌发、生长、生理指标及不同部位镉含量。结果表明:不同镉浓度水平胁迫下,种子萌发表现为低促高抑,添加锌后可以缓解镉对种子生理指标的抑制作用,减少镉含量的积累,添加硒则不能缓解种子生理指标的抑制作用,且高硒会加重毒害使种子生理指标值降低,锌硒联用可以促进种子萌发,但不能促进幼根幼芽生长;在5 mg/L镉胁迫下,添加不同浓度硒、锌均能显著增加水稻幼苗的根长、株高、叶片相对含水量、SPAD值,缓解镉对水稻生长发育的毒害,显著降低水稻根系镉含量;但锌硒联用会使水稻株高、SPAD值显著降低,而对水稻根长、叶片相对含水量的影响不显著。可见,镉胁迫下添加适宜浓度的锌、硒可以有效降低镉在水稻中的积累,缓解镉对水稻生长发育的毒害作用。
呼艳姣, 陈美凤, 强瑀, 李海燕, 刘静, 秦樊鑫. 镉胁迫下锌硒交互作用对水稻镉毒害的缓解机制[J]. 生物技术通报, 2022, 38(4): 143-152.
HU Yan-jiao, CHEN Mei-feng, QIANG Yu, LI Hai-yan, LIU Jing, QIN Fan-xin. Alleviation Mechanisms of Zinc-selenium Interaction on the Cadmium Toxicity in Rice Under Cadmium Stress[J]. Biotechnology Bulletin, 2022, 38(4): 143-152.
处理Treatment/ (mg·L-1) | 发芽势Germination potential/% | 发芽率Germination rate/% | 根鲜重Root fresh weight/(g/皿) | 芽鲜重Shoot fresh weight /(g/皿) | 根长Root length/cm | 芽长Shoot length/cm | 发芽指数 Germination index | 活力指数 Vitality index |
---|---|---|---|---|---|---|---|---|
CK | 60.67±0.02a | 78.67±0.02b | 0.24±0.02cd | 0.32±0.03c | 3.09±0.21b | 3.01±0.18ab | 59.87±3.06a | 169.90±24.42a |
Cd0.1 | 60.67±0.03a | 82.67±0.03b | 0.25±0.01c | 0.32±0.01c | 3.43±0.25ab | 2.98±0.18ab | 59.69±3.08ab | 175.63±12.00a |
Cd0.5 | 54.00±0.02b | 84.00±0.02b | 0.29±0.01b | 0.39±0.01b | 3.32±0.12b | 3.01±0.13ab | 56.56±3.05ab | 177.86±29.51a |
Cd1 | 61.00±0.04a | 90.67±0.04a | 0.31±0.02a | 0.47±0.02a | 3.66±0.14a | 3.21±0.19a | 60.34±2.43ab | 202.26±22.37a |
Cd2 | 58.67±0.03ab | 85.33±0.05ab | 0.21±0.01d | 0.31±0.02c | 2.26±0.03c | 3.01±0.05ab | 55.85±0.82b | 172.61±4.19a |
Cd4 | 52.67±0.01b | 66.00±0.02c | 0.17±0.01e | 0.29±0.01cd | 1.99±0.10d | 2.73±0.16b | 46.33±0.67c | 119.38±3.60b |
Cd8 | 42.00±0.03c | 60.00±0.04d | 0.16±0.00e | 0.28±0.02d | 1.54±0.13e | 2.66±0.19b | 37.55±1.98d | 91.43±10.69b |
Cd10 | 22.00±0.02d | 44.67±0.03e | 0.12±0.01f | 0.27±0.02d | 1.21±0.07f | 2.81±0.13b | 23.60±1.03e | 61.60±3.55c |
表1 不同浓度镉处理对水稻种子萌发及生长的影响
Table 1 Effects of different concentrations of cadmium on the germination and growth of rice seed
处理Treatment/ (mg·L-1) | 发芽势Germination potential/% | 发芽率Germination rate/% | 根鲜重Root fresh weight/(g/皿) | 芽鲜重Shoot fresh weight /(g/皿) | 根长Root length/cm | 芽长Shoot length/cm | 发芽指数 Germination index | 活力指数 Vitality index |
---|---|---|---|---|---|---|---|---|
CK | 60.67±0.02a | 78.67±0.02b | 0.24±0.02cd | 0.32±0.03c | 3.09±0.21b | 3.01±0.18ab | 59.87±3.06a | 169.90±24.42a |
Cd0.1 | 60.67±0.03a | 82.67±0.03b | 0.25±0.01c | 0.32±0.01c | 3.43±0.25ab | 2.98±0.18ab | 59.69±3.08ab | 175.63±12.00a |
Cd0.5 | 54.00±0.02b | 84.00±0.02b | 0.29±0.01b | 0.39±0.01b | 3.32±0.12b | 3.01±0.13ab | 56.56±3.05ab | 177.86±29.51a |
Cd1 | 61.00±0.04a | 90.67±0.04a | 0.31±0.02a | 0.47±0.02a | 3.66±0.14a | 3.21±0.19a | 60.34±2.43ab | 202.26±22.37a |
Cd2 | 58.67±0.03ab | 85.33±0.05ab | 0.21±0.01d | 0.31±0.02c | 2.26±0.03c | 3.01±0.05ab | 55.85±0.82b | 172.61±4.19a |
Cd4 | 52.67±0.01b | 66.00±0.02c | 0.17±0.01e | 0.29±0.01cd | 1.99±0.10d | 2.73±0.16b | 46.33±0.67c | 119.38±3.60b |
Cd8 | 42.00±0.03c | 60.00±0.04d | 0.16±0.00e | 0.28±0.02d | 1.54±0.13e | 2.66±0.19b | 37.55±1.98d | 91.43±10.69b |
Cd10 | 22.00±0.02d | 44.67±0.03e | 0.12±0.01f | 0.27±0.02d | 1.21±0.07f | 2.81±0.13b | 23.60±1.03e | 61.60±3.55c |
处理Treatment /(mg·L-1) | 发芽势Germination potential/% | 发芽率Germination rate/% | 根鲜重Root fresh weight/(g/皿) | 芽鲜重Shoot fresh weight /(g/皿) | 根长Root length/cm | 芽长Shoot length/cm | 发芽指数 Germination index | 活力指数 Vitality index |
---|---|---|---|---|---|---|---|---|
CK | 46.00±0.02a | 82.67±3.06a | 0.24±0.03a | 0.329±0.05a | 2.76±0.04a | 3.01±0.18a | 50.94±1.02a | 153.48±9.47a |
Cd5 | 11.33±0.03d | 47.33±3.06d | 0.14±0.04d | 0.29±0.04b | 0.48±0.04e | 2.75±0.11b | 17.13±0.82e | 47.08±3.52e |
Cd5+Zn5 | 31.33±0.11c | 74.00±2.00b | 0.20±0.06c | 0.25±0.04c | 1.32±0.05c | 3.12±0.14a | 38.91±0.53c | 121.41±6.22c |
Cd5+Zn10 | 39.33±0.08b | 82.67±5.03a | 0.23±0.08b | 0.33±0.05a | 1.61±0.03b | 3.12±0.04a | 44.85±1.57b | 139.96±6.67b |
Cd5+Se1 | 8.33±0.05e | 29.33±1.15e | 0.14±0.05d | 0.24±0.04c | 0.48±0.03e | 1.94±0.02d | 10.78±1.36f | 20.92±2.67f |
Cd5+Se5 | 6.00±0.01e | 24.67±3.05e | 0.01±0.06g | 0.11±0.04e | 0.45±0.04f | 1.80±0.01d | 7.39±0.45g | 13.30±0.81f |
Cd5+Se1+Zn5 | 6.67±0.05e | 15.33±1.15f | 0.07±0.03f | 0.12±0.03e | 0.46±0.03ef | 2.21±0.06c | 8.25±0.81g | 18.28±2.20f |
Cd5+Se5+Zn10 | 30.00±0.09c | 57.33±2.31c | 0.12±0.11e | 0.16±0.05d | 0.50±0.03de | 2.72±0.12b | 32.66±0.42d | 88.81±2.82d |
表2 不同锌硒镉浓度对水稻种子萌发和生长的影响
Table 2 Effects of different concentrations of zinc,selenium and cadmium on the germination and growth of rice seed
处理Treatment /(mg·L-1) | 发芽势Germination potential/% | 发芽率Germination rate/% | 根鲜重Root fresh weight/(g/皿) | 芽鲜重Shoot fresh weight /(g/皿) | 根长Root length/cm | 芽长Shoot length/cm | 发芽指数 Germination index | 活力指数 Vitality index |
---|---|---|---|---|---|---|---|---|
CK | 46.00±0.02a | 82.67±3.06a | 0.24±0.03a | 0.329±0.05a | 2.76±0.04a | 3.01±0.18a | 50.94±1.02a | 153.48±9.47a |
Cd5 | 11.33±0.03d | 47.33±3.06d | 0.14±0.04d | 0.29±0.04b | 0.48±0.04e | 2.75±0.11b | 17.13±0.82e | 47.08±3.52e |
Cd5+Zn5 | 31.33±0.11c | 74.00±2.00b | 0.20±0.06c | 0.25±0.04c | 1.32±0.05c | 3.12±0.14a | 38.91±0.53c | 121.41±6.22c |
Cd5+Zn10 | 39.33±0.08b | 82.67±5.03a | 0.23±0.08b | 0.33±0.05a | 1.61±0.03b | 3.12±0.04a | 44.85±1.57b | 139.96±6.67b |
Cd5+Se1 | 8.33±0.05e | 29.33±1.15e | 0.14±0.05d | 0.24±0.04c | 0.48±0.03e | 1.94±0.02d | 10.78±1.36f | 20.92±2.67f |
Cd5+Se5 | 6.00±0.01e | 24.67±3.05e | 0.01±0.06g | 0.11±0.04e | 0.45±0.04f | 1.80±0.01d | 7.39±0.45g | 13.30±0.81f |
Cd5+Se1+Zn5 | 6.67±0.05e | 15.33±1.15f | 0.07±0.03f | 0.12±0.03e | 0.46±0.03ef | 2.21±0.06c | 8.25±0.81g | 18.28±2.20f |
Cd5+Se5+Zn10 | 30.00±0.09c | 57.33±2.31c | 0.12±0.11e | 0.16±0.05d | 0.50±0.03de | 2.72±0.12b | 32.66±0.42d | 88.81±2.82d |
图1 不同处理对水稻种子幼根幼芽镉含量的影响 图中误差线表示标准偏差。不同大写字母表示差异极显著(P <0.01),不同小写字母表示差异显著(P <0.05),下同
Fig.1 Effects of different treatments on the cadmium cont-ent in the young roots and shoots of rice seed The error line in the figure refers to the standard deviation. Different uppercase letters show significant differences(P<0.05),and different lowercase letters indicate significant difference(P<0.05),the same below
处理 Treatment/(mg·L-1) | 根长Root length/cm | 株高Plant height/cm | 相对含水量Relative water content/% | SPAD值Arbitrary units |
---|---|---|---|---|
CK | 18.20±1.35c | 54.46±6.15a | 97.41±1.05a | 41.33±1.11a |
Cd0.5 | 15.40±0.89d | 34.53±3.10e | 81.75±1.46c | 27.57±0.83e |
Zn1 | 22.80±0.95a | 53.68±4.67a | 96.96±0.77a | 42.55±1.01a |
Se0.5 | 17.80±1.05c | 44.50±4.39b | 89.89±1.60b | 38.23±1.17b |
Cd0.5+Zn1 | 21.40±1.30a | 38.47±3.55d | 89.09±2.22b | 35.63±1.22c |
Cd0.5+Se0.5 | 19.00±0.56b | 41.96±6.22c | 95.69±1.06a | 31.10±0.92d |
Cd0.5+Zn1+Se0.5 | 16.50±0.89d | 26.73±3.61f | 80.41±1.24c | 23.07±0.67f |
表3 不同锌硒镉浓度对水稻生长和生理指标的影响
Table 3 Effects of different concentrations of zinc,selenium and cadmium on the growth and physiological indexes of rice
处理 Treatment/(mg·L-1) | 根长Root length/cm | 株高Plant height/cm | 相对含水量Relative water content/% | SPAD值Arbitrary units |
---|---|---|---|---|
CK | 18.20±1.35c | 54.46±6.15a | 97.41±1.05a | 41.33±1.11a |
Cd0.5 | 15.40±0.89d | 34.53±3.10e | 81.75±1.46c | 27.57±0.83e |
Zn1 | 22.80±0.95a | 53.68±4.67a | 96.96±0.77a | 42.55±1.01a |
Se0.5 | 17.80±1.05c | 44.50±4.39b | 89.89±1.60b | 38.23±1.17b |
Cd0.5+Zn1 | 21.40±1.30a | 38.47±3.55d | 89.09±2.22b | 35.63±1.22c |
Cd0.5+Se0.5 | 19.00±0.56b | 41.96±6.22c | 95.69±1.06a | 31.10±0.92d |
Cd0.5+Zn1+Se0.5 | 16.50±0.89d | 26.73±3.61f | 80.41±1.24c | 23.07±0.67f |
处理 Treatment | 根-茎 Root-Stem | 根-叶 Root-Leaf |
---|---|---|
Cd0.5 | 0.22±0.04a | 0.09±0.01a |
Cd0.5+Zn1 | 0.22±0.02a | 0.08±0.00ab |
Cd0.5+Se0.5 | 0.10±0.00c | 0.04±0.00c |
Cd0.5+Zn1+Se0.5 | 0.15±0.01b | 0.07±0.00b |
表4 不同处理对镉在水稻体内转运的影响
Table 4 Effects of different treatments on the cadmium transport in rice
处理 Treatment | 根-茎 Root-Stem | 根-叶 Root-Leaf |
---|---|---|
Cd0.5 | 0.22±0.04a | 0.09±0.01a |
Cd0.5+Zn1 | 0.22±0.02a | 0.08±0.00ab |
Cd0.5+Se0.5 | 0.10±0.00c | 0.04±0.00c |
Cd0.5+Zn1+Se0.5 | 0.15±0.01b | 0.07±0.00b |
[1] |
Song Y, Jin L, Wang X. Cadmium absorption and transportation pathways in plants[J]. Int J Phytoremediation, 2017, 19(2):133-141.
doi: 10.1080/15226514.2016.1207598 URL |
[2] | 殷小林, 孙志忠, 袁定阳, 等. 水稻体内镉离子代谢机制研究进展[J]. 分子植物育种, 2018, 16(3):972-978. |
Yin XL, Sun ZZ, Yuan DY, et al. Study advances on metabolic mechanism of cadmium in rice[J]. Mol Plant Breed, 2018, 16(3):972-978. | |
[3] | 林欣颖, 谭祎, 历红波. 稻米镉积累的影响因素与阻控措施[J]. 环境化学, 2020, 39(6):1530-1543. |
Lin XY, Tan Y, Li HB. A review on drivers and mitigation strategies for elevated cadmium concentration in rice[J]. Environ Chem, 2020, 39(6):1530-1543. | |
[4] | 田茂苑, 何腾兵, 付天岭, 等. 稻田土壤和稻米镉含量关系的研究进展[J]. 江苏农业科学, 2019, 47(8):25-28, 40. |
Tian MY, He TB, Fu TL, et al. Research progress on relationship between paddy soil and cadmium content in rice grains[J]. Jiangsu Agric Sci, 2019, 47(8):25-28, 40. | |
[5] |
Chen H, Yang X, Wang P, et al. Dietary cadmium intake from rice and vegetables and potential health risk:a case study in Xiangtan, Southern China[J]. Sci Total Environ, 2018, 639:271-277.
doi: 10.1016/j.scitotenv.2018.05.050 URL |
[6] | 杨定清, 严俊, 雷绍荣, 等. 稻米重金属镉含量预警方法研究[J]. 中国农学通报, 2016, 32(3):124-127. |
Yang DQ, Yan J, Lei SR, et al. Study on early warning method of cadmium content in rice[J]. Chin Agric Sci Bull, 2016, 32(3):124-127. | |
[7] | 易春丽, 刘汇川, 李海英, 等. 镉砷低积累水稻品种筛选[J]. 湖南农业科学, 2020(6):1-4. |
Yi CL, Liu HC, Li HY, et al. Screening of rice varieties with low cadmium and arsenic accumulation[J]. Hunan Agric Sci, 2020(6):1-4. | |
[8] | 陈光辉, 周森林, 易亚科, 等. 不同生育期脱水对稻米镉含量的影响[J]. 中国农学通报, 2018, 34(3):1-5. |
Chen GH, Zhou SL, Yi YK, et al. Effects of drought stress in different growth stages on grain cadmium content of rice[J]. Chin Agric Sci Bull, 2018, 34(3):1-5. | |
[9] | 周静, 孟桂元, 马国辉, 等. 镉胁迫对超级稻生长及稻米镉积累特性的影响[J]. 分子植物育种, 2017, 15(8):3191-3198. |
Zhou J, Meng GY, Ma GH, et al. Effects of Cd stress on growth and Cd accumulation in super hybrid rice[J]. Mol Plant Breed, 2017, 15(8):3191-3198. | |
[10] | 刘文江, 曾宪平, 高方远. 不同栽培方式下早熟水稻品种的稻米镉吸附规律[J]. 中国稻米, 2020, 26(6):46-48. |
Liu WJ, Zeng XP, Gao FY. Cadmium accumulate rule in rice grain for early matured hybrid rice under different cultivation methods[J]. China Rice, 2020, 26(6):46-48. | |
[11] | 李陈贞, 孙亚莉, 刘红梅, 等. 镉胁迫下不同水稻品种幼苗生长及光合性能的差异[J]. 湖南农业大学学报:自然科学版, 2021, 47(2):147-152. |
Li CZ, Sun YL, Liu HM, et al. The difference of seedling growth and photosynthetic performance of different rice varieties under cadmium stress[J]. J Hunan Agric Univ:Nat Sci, 2021, 47(2):147-152. | |
[12] | 雷武生, 杨宝林, 戴金平. 硫肥对镉胁迫下不同基因型水稻抗氧化系统和光合特性的影响[J]. 河北农业大学学报, 2014, 37(2):12-17. |
Lei WS, Yang BL, Dai JP. Effects of sulfur on the antioxidant system and photosynthetic characteristics in different rice genotypes under Cadmium stress[J]. J Agric Univ Hebei, 2014, 37(2):12-17. | |
[13] |
Cao ZZ, Qin ML, Lin XY, et al. Sulfur supply reduces cadmium uptake and translocation in rice grains(Oryza sativa L.)by enhancing iron plaque formation, cadmium chelation and vacuolar sequestration[J]. Environ Pollut, 2018, 238:76-84.
doi: 10.1016/j.envpol.2018.02.083 URL |
[14] | 霍洋, 仇银燕, 周航, 等. 外源磷对镉胁迫下水稻生长及镉累积转运的影响[J]. 环境科学, 2020, 41(10):4719-4725. |
Huo Y, Qiu YY, Zhou H, et al. Effects of exogenous phosphorus on rice growth and cadmium accumulation and transportation under cadmium stress[J]. Environ Sci, 2020, 41(10):4719-4725. | |
[15] | 牟美睿, 刘洋, 贲蓓倍, 等. 镧对镉胁迫下水稻矿质元素吸收与转运的影响[J]. 南方农业学报, 2020, 51(5):1022-1028. |
Mu MR, Liu Y, Ben BB, et al. Effects of lanthanum on the absorption and translocation of mineral elements in rice under cadmium stress[J]. J South Agric, 2020, 51(5):1022-1028. | |
[16] | 潘伯桂, 莫汉乾, 王维, 等. 硅素对水稻幼苗镉积累及抗胁迫应答的调节效应[J]. 应用生态学报, 2021, 32(3):1096-1104. |
Pan BG, Mo HQ, Wang W, et al. Regulating effects of silicon on Cd-accumulation and stress-resistant responding in rice seedling[J]. Chin J Appl Ecol, 2021, 32(3):1096-1104. | |
[17] | 张云慧, 杜平, 秦晓鹏, 等. 不同浓度锌处理下水稻幼苗对镉的累积效应[J]. 环境科学研究, 2020, 33(3):761-768. |
Zhang YH, Du P, Qin XP, et al. Accumulation of cadmium in rice seedlings after treatment with different concentrations of zinc[J]. Res Environ Sci, 2020, 33(3):761-768. | |
[18] | 朱秀红, 程红梅, 季柳洋, 等. 锌、镉及其复合胁迫下白花泡桐幼苗的生理及富集特征[J]. 生物工程学报, 2021, 37(7):2463-2473. |
Zhu XH, Cheng HM, Ji LY, et al. Physiological and enrichment characteristics of Paulownia fortunei seedlings under zinc, cadmium and their combined stress[J]. Chin J Biotechnol, 2021, 37(7):2463-2473. | |
[19] |
Huang QQ, Liu YY, Qin X, et al. Selenite mitigates cadmium-induced oxidative stress and affects Cd uptake in rice seedlings under different water management systems[J]. Ecotoxicol Environ Saf, 2019, 168:486-494.
doi: 10.1016/j.ecoenv.2018.10.078 URL |
[20] | 梁欢婷, 何冰, 顾明华, 等. 施硒对镉污染稻米中镉、硒含量的影响及其膳食风险评估[J]. 食品工业, 2021, 42(3):331-335. |
Liang HT, He B, Gu MH, et al. Foliar selenium application on the concentrations of selenium and cadmium in rice grain and health risk assessment[J]. Food Ind, 2021, 42(3):331-335. | |
[21] | 刘永贤, 潘丽萍, 黄雁飞, 等. 外源喷施硒与硅对水稻籽粒镉累积的影响[J]. 西南农业学报, 2017, 30(7):1588-1592. |
Liu YX, Pan LP, Huang YF, et al. Effects of selenium or silicon foliar fertilizer on cadmium accumulation in rice[J]. Southwest China J Agric Sci, 2017, 30(7):1588-1592. | |
[22] | 鱼小军, 张建文, 潘涛涛, 等. 铜、镉、铅对7种豆科牧草种子萌发和幼苗生长的影响[J]. 草地学报, 2015, 23(4):793-803. |
Yu XJ, Zhang JW, Pan TT, et al. Effects of heavy metals:copper, cadmium and lead on the seed germination and seedling growth of leguminous forage[J]. Acta Agrestia Sin, 2015, 23(4):793-803. | |
[23] |
Li LL, Cui YH, Lu LY, et al. Selenium stimulates cadmium detoxification in Caenorhabditis elegans through thiols-mediated nanoparticles formation and secretion[J]. Environ Sci Technol, 2019, 53(5):2344-2352.
doi: 10.1021/acs.est.8b04200 URL |
[24] |
Ayano H, Miyake M, Terasawa K, et al. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synjournal of CdSe nanoparticles[J]. J Biosci Bioeng, 2014, 117(5):576-581.
doi: 10.1016/j.jbiosc.2013.10.010 URL |
[25] |
Liu L, Shang YK, Li L, et al. Cadmium stress in Dongying wild soybean seedlings:growth, Cd accumulation, and photosynjournal[J]. Photosynthetica, 2018, 56(4):1346-1352.
doi: 10.1007/s11099-018-0844-2 URL |
[26] | 杨馥榕, 王晓红, 肖琪, 等. 木槿品种对镉胁迫的生理响应及耐镉能力评价[J]. 生物技术通报, 2022, 38(1):98-107. |
Yang FR, Wang XH, Xiao Q, et al. Physiological response of hibiscus syriacus varieties to cadmium stress and evaluation of cadmium tolerance[J]. Biotechnol, Bull, 2022, 38(1):98-107. | |
[27] | 吴羽晨, 邓小莉, 张家洋, 等. 锌、镉胁迫对4种杂草种子萌发特征的影响[J]. 云南农业大学学报:自然科学, 2020, 35(6):1089-1095. |
Wu YC, Deng XL, Zhang JY, et al. Effects of zinc and cadmium stresses on the germination characteristics of four weed species seeds[J]. J Yunnan Agric Univ:Nat Sci, 2020, 35(6):1089-1095. | |
[28] | 李颖, 杨小环, 鲁一薇, 等. 外源硒对镉胁迫下紫苏幼苗生长发育毒害的缓解效应[J]. 山西农业科学, 2021, 49(4):408-413. |
Li Y, Yang XH, Lu YW, et al. Alleviating toxic effects of exogenous selenium on growth and development of Perilla frutescens seedlings under cadmium stress[J]. J Shanxi Agric Sci, 2021, 49(4):408-413. | |
[29] | 王海希, 周浩民, 李柳燕, 等. 硒预处理对镉胁迫下荷花幼苗生长和生理的影响[J]. 植物资源与环境学报, 2019, 28(2):64-70. |
Wang HX, Zhou HM, Li LY, et al. Effect of selenium pretreatment on growth and physiology of Nelumbo nucifera seedlings under cadmium stress[J]. J Plant Resour Environ, 2019, 28(2):64-70. | |
[30] | 代邹, 王春雨, 李娜, 等. 硒对不同水稻幼苗镉胁迫的缓解作用及其对矿质营养的影响[J]. 浙江大学学报:农业与生命科学版, 2016, 42(6):720-730. |
Dai Z, Wang CY, Li N, et al. Alleviation role and effects of selenium on mineral nutrients in rice(Oryza sativa)seedlings under cadmium stress[J]. J Zhejiang Univ:Agric Life Sci, 2016, 42(6):720-730. | |
[31] | 陈丽丽, 付媛媛, 王艳萍, 等. 镉锌胁迫对小麦和2种杂草种子萌发及幼苗生长的影响[J]. 西南林业大学学报:自然科学, 2019, 39(1):50-57. |
Chen LL, Fu YY, Wang YP, et al. Effects of Cd2+ and Zn2+ on seed germination and seedling growth of Triticum aestivum and 2 weed species[J]. J Southwest For Univ:Nat Sci, 2019, 39(1):50-57. | |
[32] | 王丙烁, 黄益宗, 李娟, 等. 镉胁迫下不同改良剂对水稻种子萌发和镉吸收积累的影响[J]. 农业环境科学学报, 2019, 38(4):746-755. |
Wang BS, Huang YZ, Li J, et al. Effects of different amendments on seed germination and cadmium uptake and accumulation in rice seedlings under cadmium stress[J]. J Agro Environ Sci, 2019, 38(4):746-755. | |
[33] | 赵萍, 瞿华香, 张玉烛. 锌对镉胁迫下水稻幼苗镉吸收转运及根系形态的影响[J]. 广东农业科学, 2017, 44(5):99-105. |
Zhao P, Qu HX, Zhang YZ. Effects of zinc on cadmium uptake, transfer and root morphology of rice seedings under cadmium stress[J]. Guangdong Agric Sci, 2017, 44(5):99-105. | |
[34] | 铁梅, 刘阳, 李华为, 等. 硒镉处理对萝卜硒镉吸收的影响及其交互作用[J]. 生态学杂志, 2014, 33(6):1587-1593. |
Tie M, Liu Y, Li HW, et al. Uptake of Se and Cd in radish and their effects on growth[J]. Chin J Ecol, 2014, 33(6):1587-1593. | |
[35] |
Hasanuzzaman M, Nahar K, Gill SS, et al. Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L. :an intrinsic study on antioxidant defense and glyoxalase systems[J]. Front Plant Sci, 2017, 8:115.
doi: 10.3389/fpls.2017.00115 pmid: 28239385 |
[36] | Singh P, Pokharia C, Shah K. Exogenous peroxidase mitigates cadmium toxicity, enhances rhizobial population and lowers root knot formation in rice seedlings[J]. Rice Sci, 2021, 28(2):166-177. |
[37] |
王竹承, 刘辉, 李荣华. 外源硫对镉胁迫下马齿苋光合性状和矿质元素吸收的影响[J]. 生物技术通报, 2020, 36(3):133-140.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0672 |
Wang ZC, Liu H, Li RH. Effects of exogenous sulfur on photosynthetic characteristics and mineral elements absorption in Portulaca oleracea under cadmium stress[J]. Biotechnol Bull, 2020, 36(3):133-140. | |
[38] |
王竹承, 刘辉, 李荣华, 等. 外源硫与乙烯缓解马齿苋镉胁迫的生理机制研究[J]. 生物技术通报, 2019, 35(10):71-79.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0303 |
Wang ZC, Liu H, Li RH, et al. Physiological mechanism of exogenous ethylene and sulfur in alleviating cadmium stress in Portulaca oleracea[J]. Biotechnol Bull, 2019, 35(10):71-79. | |
[39] | 王波, 张然然, 杨如意, 等. 外源硒和耐硒细菌对镉胁迫下水稻生长、生理和硒镉积累的影响[J]. 农业环境科学学报, 2020, 39(12):2710-2718. |
Wang B, Zhang RR, Yang RY, et al. Effect of exogenous selenium(Se)and Se-tolerant bacterium on the growth, physiology, and Se and cadmium(Cd)accumulation in rice(Oryza sativa L.)grown under Cd stress[J]. J Agro Environ Sci, 2020, 39(12):2710-2718. | |
[40] | Hussain A, Ali S, Rizwan M, et al. Morphological and physiological responses of plants to cadmium toxicity[M]//Cadmium Toxicity and Tolerance in Plants. Amsterdam:Elsevier, 2019: 47-72. |
[41] | 马欢欢, 高峰, 樊向阳, 等. 锌对镉胁迫下黄菖蒲抗氧化酶系统及富集镉的影响[J]. 灌溉排水学报, 2020, 39(11):104-111. |
Ma HH, Gao F, Fan XY, et al. The effects of Zn on antioxidant enzymes and accumulation of cadmium in Iris pseudacorus under Cd stress[J]. J Irrigation Drainage, 2020, 39(11):104-111. | |
[42] | 赵明香, 朱永立, 向蓉蓉, 等. 外源水杨酸对镉锌胁迫下烤烟生长及抗氧化特性的影响[J]. 西北农林科技大学学报:自然科学版, 2020, 48(2):34-41. |
Zhao MX, Zhu YL, Xiang RR, et al. Effects of exogenous salicylic acid on growth and antioxidant characteristics of flue-cured tobacco under cadmium and zinc stress[J]. J Northwest A F Univ:Nat Sci Ed, 2020, 48(2):34-41. | |
[43] |
Zhao YY, Hu CX, Wu ZC, et al. Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape(Brassica napus L.)[J]. Environ Exp Bot, 2019, 158:161-170.
doi: 10.1016/j.envexpbot.2018.11.017 URL |
[44] | Saidi I, Chtourou Y, Djebali W. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower(Helianthus annuus)seedlings[J]. J Plant Physiol, 2014, 171(5):85-91. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[5] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[8] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[9] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[10] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[11] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[12] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[13] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[14] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[15] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||