生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 153-162.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0915
收稿日期:
2021-07-16
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
郝林,男,教授,研究方向:植物逆境生物学;E-mail: haolinwj2001@163.com作者简介:
祖国蔷,女,硕士研究生,研究方向:植物与微生物相互作用;E-mail: 1875224329@qq.com
基金资助:
ZU Guo-qiang(), HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin()
Received:
2021-07-16
Published:
2022-04-26
Online:
2022-05-06
摘要:
探究根内生菌Burkholderia sp. GD17在水稻对镉(cadmium,Cd)胁迫应答中的调节作用,为减少Cd的积累、提高植株的Cd耐受性奠定基础。以接种GD17和未接菌的幼苗为材料,在添加Cd条件下,分析其生理生化代谢和相关基因表达。接菌5 d后,根中GD17菌的数量达到3.6×106 CFU/g根鲜重,且在植株生长过程中内生菌数量维持在这一级别。Cd暴露(20和40 mg/kg土壤)20 d后,接种GD17植株的干(鲜)重显著高于未接菌植株。接种GD17和未接菌植株根中的Cd含量无显著差异,但前者地上部的Cd含量是后者的43%。Cd胁迫下,接种GD17根和叶片的丙二醛含量分别是未接菌植株的78%和64%。与未接菌植株相比,接种GD17叶片的超氧化物歧化酶活性降低,但过氧化物酶和过氧化氢酶活性均升高。接种GD17有效阻止了光合作用的损伤,如减缓Cd引发的总叶绿素含量、净光合速率和气孔导度的下降,以及胞间CO2浓度的升高。叶绿素荧光成像进一步反映了GD17对光合作用的保护性影响。与未接菌植株相比,接种GD17植株根中所有分析的与Cd耐受相关基因的表达水平均显著升高。根部接种GD17可系统性地减轻Cd对水稻幼苗的伤害,其可能的机理包括:降低Cd的根-茎运输、减轻Cd引发的氧化伤害和对光合作用的损伤;上调Cd耐受相关基因在根中的表达。基于此,GD17菌株在低Cd水稻生产中具有潜在的应用价值。
祖国蔷, 胡哲, 王琪, 李光哲, 郝林. Burkholderia sp. GD17对水稻幼苗镉耐受的调节[J]. 生物技术通报, 2022, 38(4): 153-162.
ZU Guo-qiang, HU Zhe, WANG Qi, LI Guang-zhe, HAO Lin. Regulatory Role of Burkholderia sp. GD17 in Rice Seedling’s Responses to Cadmium Stress[J]. Biotechnology Bulletin, 2022, 38(4): 153-162.
基因 Gene | 基因ID Gene ID | 功能 Function | 引物序列 Primer sequence(5'-3') | 产物长度 Length/bp |
---|---|---|---|---|
ABCG5 | Os03g0281900 | 介导Cd进入液泡 Transporter pumping Cd into vacuole | F:AGGAGGACCTTCTGTACCCG R:CAGCATGATCGGGTTGTGGA | 245 |
HMA1 | Os06g0690700 | 介导Cd进入液泡 Transporter pumping Cd into vacuole | F:CCGTAGCCTTCCCACTTGTC R:ACCGCCCTCCAATGAGTTTC | 140 |
HMA3 | Os07g0232900 | 介导Cd进入液泡 Transporter pumping Cd into vacuole | F:CTGGCTCTGGTGATGCTTGT R:CCCAACCAGATGGAACGAGT | 219 |
MT1a | Os11g0704500 | Cd络合和活性氧清除 Cd chelation and ROS scavenging | F:TGCGGAAAGAAGTACCCTGAC R:CCTCAAACTGCTGCGCCTTC | 100 |
MT1c | Os12g0571100 | Cd络合和活性氧清除 Cd chelation and ROS scavenging | F:ATGTCGTGCGGTGGAAGTT R:TTGCAGTAGTGGTGGTGGTG | 109 |
NRAMP5 | Os07g0257200 | 调节Cd的根-茎转运 Regulating Cd root-shoot transport | F:GGCCTCCAAAAATACGGGGT R:GCAAGAACAGATTGTGGGGC | 217 |
PCS1 | Os05g0415200 | 介导络合素-Cd复合物的形成 Mediating the formation of phytochelatin -Cd complex | F:TGGATGTCGCTCGCTTCAAA R:CATGAACCCCCTGAGAAGCC | 107 |
PCS2 | Os06g0102300 | 介导络合素-Cd复合物的形成 Mediating the formation of phytochelatin -Cd complex | F:GCAACTGGTCTACTCAGGGG R:GCTTTCATCTCTGCAACTCTGC | 101 |
表1 基因表达分析特异性引物
Table 1 Primer sequences used for the analysis of gene expression
基因 Gene | 基因ID Gene ID | 功能 Function | 引物序列 Primer sequence(5'-3') | 产物长度 Length/bp |
---|---|---|---|---|
ABCG5 | Os03g0281900 | 介导Cd进入液泡 Transporter pumping Cd into vacuole | F:AGGAGGACCTTCTGTACCCG R:CAGCATGATCGGGTTGTGGA | 245 |
HMA1 | Os06g0690700 | 介导Cd进入液泡 Transporter pumping Cd into vacuole | F:CCGTAGCCTTCCCACTTGTC R:ACCGCCCTCCAATGAGTTTC | 140 |
HMA3 | Os07g0232900 | 介导Cd进入液泡 Transporter pumping Cd into vacuole | F:CTGGCTCTGGTGATGCTTGT R:CCCAACCAGATGGAACGAGT | 219 |
MT1a | Os11g0704500 | Cd络合和活性氧清除 Cd chelation and ROS scavenging | F:TGCGGAAAGAAGTACCCTGAC R:CCTCAAACTGCTGCGCCTTC | 100 |
MT1c | Os12g0571100 | Cd络合和活性氧清除 Cd chelation and ROS scavenging | F:ATGTCGTGCGGTGGAAGTT R:TTGCAGTAGTGGTGGTGGTG | 109 |
NRAMP5 | Os07g0257200 | 调节Cd的根-茎转运 Regulating Cd root-shoot transport | F:GGCCTCCAAAAATACGGGGT R:GCAAGAACAGATTGTGGGGC | 217 |
PCS1 | Os05g0415200 | 介导络合素-Cd复合物的形成 Mediating the formation of phytochelatin -Cd complex | F:TGGATGTCGCTCGCTTCAAA R:CATGAACCCCCTGAGAAGCC | 107 |
PCS2 | Os06g0102300 | 介导络合素-Cd复合物的形成 Mediating the formation of phytochelatin -Cd complex | F:GCAACTGGTCTACTCAGGGG R:GCTTTCATCTCTGCAACTCTGC | 101 |
图1 GD17菌在根中的定殖效率(以菌落形成单位表示) 在种子催芽时加入GD17菌悬液,对照以蒸馏水代替。图中数据以3次独立生物学试验的平均值±标准差表示(n=3);每次试验取材于5株植株的根。图中不同的小写字母表示在P<0.05具有显著性差异。下同
Fig. 1 Colonization efficiency of GD17 inside roots as indicated by colony-forming units(CFU) GD17 inoculation was performed during seed germination,CK was replaced with distilled water. The data were collected from three replicated experiments(n = 3)with 5 plants used in each batch of experiment,and represented as means ± SD. Bars with different lower-case letters indicate significant differences at P<0.05. The same below
图2 GD17和(或)Cd胁迫对植株生长和Cd含量的影响 图中数据以3次独立生物学试验的平均值±标准差表示(n=3);每次试验取材于20株20 d龄的植株。A和B:茎叶鲜重和干重;C和D:根鲜重和干重;E:地上部形态的代表性图片;F和G:根和地上部Cd含量
Fig. 2 Effects of GD17 and(or)Cd stress on plant grow-th and Cd contents Twenty-day-old plants were evaluated. The data were collected from three replicated experiments(n=3)with 20 plants used in each batch of experiment,and represented as means ± SD. A and B:Fresh and dry weight of shoots. C and D:Fresh and dry weight of roots. E:Representative pictures showing the morphology of aboveground part. F and G:Cd contents in roots and shoots
图3 GD17和(或)Cd胁迫对植株丙二醛含量和抗氧化酶活性的影响 A和B:根和地上部的丙二醛(MDA)含量;C和D:根和地上部超氧化物歧化酶(SOD)活性;E和F:根和地上部过氧化物酶(PRX)活性;G和H:根和地上部过氧化氢酶(CAT)活性
Fig. 3 Effects of GD17 and(or)Cd stress on malondialde-hyde(MDA)content of plants,and activities of antioxidation enzymes A and B:Malondialdehyde contents in roots and shoots. C and D:Superoxide dismutase activity in roots and shoots. E and F:Peroxidase activity in roots and shoots. G and H:Catalase activity in roots and shoots
图4 GD17和(或)Cd胁迫对光合作用相关参数的影响 A:总叶绿素含量;B:净光合速率;C:气孔导度;D:胞间CO2浓度
Fig. 4 Effects of GD17 and(or)Cd stress on photosynth-esis-related parameters A:Total chlorophyll content. B:Photosynthetic rate(Pn). C:Stomatal conductance(Gs). D:Intercellular CO2 concentration(Ci)
图5 GD17和(或)Cd胁迫对叶绿素荧光参数的影响 Fv/Fm:PSII最大光化学效率;ФPSII:PSII实际光化学效率;ETR:电子传递效率;NPQ:非光化学荧光猝灭系数
Fig. 5 Effects of GD17 and(or)Cd stress on chlorophyll fluorescence parameters Fv/Fm:Maximal photochemical efficiency of PSII. ФPSII:Actual photochemical efficiency of PSII. ETR:Electron transport rate. NPQ:Non-photochemical quenching of fluorescence
[1] |
Fagerberg B, Barregard L, Sallsten G, et al. Cadmium exposure and atherosclerotic carotid plaques——results from the Malmö diet and cancer study[J]. Environ Res, 2015, 136:67-74.
doi: 10.1016/j.envres.2014.11.004 pmid: 25460622 |
[2] |
Fasani E, Manara A, Martini F, et al. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals[J]. Plant Cell Environ, 2018, 41(5):1201-1232.
doi: 10.1111/pce.12963 URL |
[3] |
Wang P, Chen H, Kopittke PM, et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environ Pollut, 2019, 249:1038-1048.
doi: 10.1016/j.envpol.2019.03.063 URL |
[4] | Qadir S, Jamshieed S, Rasool S, et al. Modulation of plant growth and metabolism in cadmium-enriched environments[M]//Reviews of environmental contamination and toxicology. Whitacre DM. Switzerland: Springer International Publishing, 2014: 51-88. |
[5] |
Huybrechts M, Cuypers A, Deckers J, et al. Cadmium and plant development:an agony from seed to seed[J]. Int J Mol Sci, 2019, 20(16):3971.
doi: 10.3390/ijms20163971 URL |
[6] |
Sui FQ, Chang JD, Tang Z, et al. Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J]. Plant Soil, 2018, 433(1/2):377-389.
doi: 10.1007/s11104-018-3849-5 URL |
[7] |
Zhao FJ, Wang P. Arsenic and cadmium accumulation in rice and mitigation strategies[J]. Plant Soil, 2020, 446(1):1-21.
doi: 10.1007/s11104-019-04374-6 URL |
[8] | Song Y, Wang Y, Mao W, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One, 2017, 12(5):e0177978. |
[9] |
Rizwan M, Ali S, Adrees M, et al. Cadmium stress in rice:toxic effects, tolerance mechanisms, and management:a critical review[J]. Environ Sci Pollut Res Int, 2016, 23(18):17859-17879.
doi: 10.1007/s11356-016-6436-4 URL |
[10] |
Pramanik K, Mitra S, Sarkar A, et al. Characterization of cadmium-resistant Klebsiella pneumoniae MCC 3091 promoted rice seedling growth by alleviating phytotoxicity of cadmium[J]. Environ Sci Pollut Res Int, 2017, 24(31):24419-24437.
doi: 10.1007/s11356-017-0033-z URL |
[11] |
郭英, 杨萍, 张丹雨, 等. 野大豆多功能根际促生菌的筛选鉴定和促生效果研究[J]. 生物技术通报, 2018, 34(10):108-115.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0437 |
Guo Y, Yang P, Zhang DY, et al. Screening, identification and growth-promoting effect of multifunction rhizosphere growth-promoting strain of wild soybean[J]. Biotechnol Bull, 2018, 34(10):108-115. | |
[12] |
Yang AZ, Akhtar SS, Fu Q, et al. Burkholderia phytofirmans PsJN stimulate growth and yield of quinoa under salinity stress[J]. Plants, 2020, 9(6):672.
doi: 10.3390/plants9060672 URL |
[13] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
Li HS. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000. | |
[14] | 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 3版. 北京: 高等教育出版社, 2015. |
Wang XK, Huang JL. Principles and techniques of plant physiological biochemical experiment[M]. 3rd ed. Beijing: Higher Education Press, 2015. | |
[15] |
Hemeda HM, Klein BP. Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts[J]. J Food Sci, 1990, 55(1):184-185.
doi: 10.1111/j.1365-2621.1990.tb06048.x URL |
[16] |
Wang YY, Wang Y, Li GZ, et al. Salicylic acid-altering Arabidopsis plant response to cadmium exposure:Underlying mechanisms affecting antioxidation and photosynjournal-related processes[J]. Ecotoxicol Environ Saf, 2019, 169:645-653.
doi: 10.1016/j.ecoenv.2018.11.062 URL |
[17] |
Narsai R, Ivanova A, Ng S, et al. Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets[J]. BMC Plant Biol, 2010, 10:56.
doi: 10.1186/1471-2229-10-56 pmid: 20353606 |
[18] |
Zhang JH, Li Q, Zeng YF, et al. Bioaccumulation and distribution of cadmium by Burkholderia cepacia GYP1 under oligotrophic condition and mechanism analysis at proteome level[J]. Ecotoxicol Environ Saf, 2019, 176:162-169.
doi: 10.1016/j.ecoenv.2019.03.091 URL |
[19] |
Yang ZH, Zhang Z, Chai LY, et al. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90[J]. J Hazard Mater, 2016, 301:145-152.
doi: 10.1016/j.jhazmat.2015.08.047 URL |
[20] |
Wang X, Zhang X, Liu XM, et al. Physiological, biochemical and proteomic insight into integrated strategies of an endophytic bacterium Burkholderia cenocepacia strain YG-3 response to cadmium stress[J]. Metallomics, 2019, 11(7):1252-1264.
doi: 10.1039/c9mt00054b URL |
[21] | Wang CR, Huang YC, Yang XR, et al. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium[J]. Chemosphere, 2020, 252:126603. |
[22] |
Cuypers A, Plusquin M, Remans T, et al. Cadmium stress:an oxidative challenge[J]. Biometals, 2010, 23(5):927-940.
doi: 10.1007/s10534-010-9329-x pmid: 20361350 |
[23] |
Sarkar A, Pramanik K, Mitra S, et al. Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259[J]. J Plant Physiol, 2018, 231:434-442.
doi: 10.1016/j.jplph.2018.10.010 URL |
[24] |
Mitra S, Pramanik K, Sarkar A, et al. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress[J]. Ecotoxicol Environ Saf, 2018, 156:183-196.
doi: 10.1016/j.ecoenv.2018.03.001 URL |
[25] | Liu HJ, Yang L, Li N, et al. Cadmium toxicity reduction in rice(Oryza sativa L.)through iron addition during primary reaction of photosynjournal[J]. Ecotoxicol Environ Saf, 2020, 200:110746. |
[26] |
Khanna, Kohli, Ohri, et al. Microbial fortification improved photosynthetic efficiency and secondary metabolism in Lycopersicon esculentum plants under Cd stress[J]. Biomolecules, 2019, 9(10):581.
doi: 10.3390/biom9100581 URL |
[27] |
Baker NR. Chlorophyll fluorescence:a probe of photosynjournal in vivo[J]. Annu Rev Plant Biol, 2008, 59:89-113.
doi: 10.1146/annurev.arplant.59.032607.092759 pmid: 18444897 |
[28] |
Huang W, Zhang SB, Liu T. Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant Panax notoginseng[J]. Front Plant Sci, 2018, 9:637.
doi: 10.3389/fpls.2018.00637 pmid: 29868090 |
[29] | Wu Y, Ma L, Liu Q, et al. Pseudomonas fluorescens promote photosynjournal, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii[J]. Sci Total Environ, 2020, 726:138554. |
[30] |
Takahashi R, Bashir K, Ishimaru Y, et al. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice[J]. Plant Signal Behav, 2012, 7(12):1605-1607.
doi: 10.4161/psb.22454 pmid: 23072989 |
[31] |
Cong W, Miao Y, Xu L, et al. Transgenerational memory of gene expression changes induced by heavy metal stress in rice(Oryza sativa L.)[J]. BMC Plant Biol, 2019, 19(1):282.
doi: 10.1186/s12870-019-1887-7 URL |
[32] |
Ueno D, Yamaji N, Kono I, et al. Gene limiting cadmium accumulation in rice[J]. PNAS, 2010, 107(38):16500-16505.
doi: 10.1073/pnas.1005396107 URL |
[33] |
Ishikawa S, Ishimaru Y, Igura M, et al. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice[J]. PNAS, 2012, 109(47):19166-19171.
doi: 10.1073/pnas.1211132109 pmid: 23132948 |
[34] |
Ishimaru Y, Takahashi R, Bashir K, et al. Characterizing the role of rice NRAMP5 in manganese, iron and cadmium transport[J]. Sci Rep, 2012, 2:286.
doi: 10.1038/srep00286 URL |
[35] |
Chang JD, Huang S, Konishi N, et al. Overexpression of the manganese/cadmium transporter OsNRAMP5 reduces cadmium accumulation in rice grain[J]. J Exp Bot, 2020, 71(18):5705-5715.
doi: 10.1093/jxb/eraa287 URL |
[36] |
Tang L, Mao B, Li Y, et al. Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yield[J]. Sci Rep, 2017, 7(1):14438.
doi: 10.1038/s41598-017-14832-9 pmid: 29089547 |
[37] | Yamauchi T, Fukazawa A, Nakazono M. METALLOTHIONEIN genes encoding ROS scavenging enzymes are down-regulated in the root cortex during inducible aerenchyma formation in rice[J]. Plant Signal Behav, 2017, 12(11):e1388976. |
[38] |
Kim YO, Kang H. Comparative expression analysis of genes encoding metallothioneins in response to heavy metals and abiotic stresses in rice(Oryza sativa)and Arabidopsis thaliana[J]. Biosci Biotechnol Biochem, 2018, 82(9):1656-1665.
doi: 10.1080/09168451.2018.1486177 URL |
[39] | Yamazaki S, Ueda Y, Mukai A, et al. Rice phytochelatin synthases OsPCS1 and OsPCS2 make different contributions to cadmium and arsenic tolerance[J]. Plant Direct, 2018, 2(1):e00034. |
[40] |
Uraguchi S, Tanaka N, Hofmann C, et al. Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains[J]. Plant Cell Physiol, 2017, 58(10):1730-1742.
doi: 10.1093/pcp/pcx114 pmid: 29016913 |
[41] |
Brunetti P, Zanella L, De Paolis A, et al. Cadmium-inducible expression of the ABC-type transporter AtABCC3 increases phytochelatin-mediated cadmium tolerance in Arabidopsis[J]. J Exp Bot, 2015, 66(13):3815-3829.
doi: 10.1093/jxb/erv185 URL |
[42] |
Matsuda S, Funabiki A, Furukawa K, et al. Genome-wide analysis and expression profiling of half-size ABC protein subgroup G in rice in response to abiotic stress and phytohormone treatments[J]. Mol Genet Genomics, 2012, 287(10):819-835.
doi: 10.1007/s00438-012-0719-3 URL |
[43] |
Fu S, Lu Y, Zhang X, et al. The ABC transporter ABCG36 is required for cadmium tolerance in rice[J]. J Exp Bot, 2019, 70(20):5909-5918.
doi: 10.1093/jxb/erz335 URL |
[44] |
Oda K, Otani M, Uraguchi S, et al. Rice ABCG43 is Cd inducible and confers Cd tolerance on yeast[J]. Biosci Biotechnol Biochem, 2011, 75(6):1211-1213.
doi: 10.1271/bbb.110193 URL |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[4] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[5] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[6] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[7] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[8] | 余慧, 王静, 梁昕昕, 辛亚平, 周军, 赵会君. 宁夏枸杞铁镉响应基因的筛选及其功能验证[J]. 生物技术通报, 2023, 39(7): 195-205. |
[9] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[10] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[11] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[12] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[13] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[14] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[15] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||