生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 157-165.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0942
沈佳佳1(), 侯小改1, 王二强2, 王菲3(), 郭丽丽1()
收稿日期:
2021-07-23
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
沈佳佳,女,硕士研究生,研究方向:牡丹生理生态与分子生物学;E-mail: 基金资助:
SHEN Jia-jia1(), HOU Xiao-gai1, WANG Er-qiang2, WANG Fei3(), GUO Li-li1()
Received:
2021-07-23
Published:
2022-06-26
Online:
2022-07-11
摘要:
油用牡丹作为市场上新兴的木本油料作物,土壤有效磷缺乏严重制约油用牡丹生长发育以及产量和品质的提升。分离筛选油用牡丹高效解磷细菌,充分发挥其根际微生物的作用,是实现油用牡丹高产优质目标、保障农业绿色发展的有效途径。以不同生长年限油用牡丹‘凤丹’根际土壤为研究对象,选用以植酸钙为磷源的培养基,利用平板稀释法分离筛选具有解有机磷能力的细菌,并利用16S rDNA测序技术对菌株进行鉴定,结合溶磷圈法和钼锑抗比色法分析其解磷能力。从一、三、四年生油用牡丹根际土壤中共筛选出14株解有机磷菌株。其中隶属于芽孢杆菌属和假单胞菌属的各有5株,隶属于节杆菌属的有3株,还有1株隶属于新鞘氨醇杆菌属;14株解有机磷菌株溶磷指数和溶磷效率分别在1.6-9.0以及60%-800%之间,其中一年生油用牡丹根际筛选到的菌株FD1-15的溶磷指数和溶磷效率均最高;培养液中速效磷含量为2.88-5.30 mg/L,活化率在26.44%-62.13%之间,解磷能力和活化能力最强的是从三年生油用牡丹根际筛选获得的菌株FD3-13,隶属于芽孢杆菌属。这为提高油用牡丹的产油量和食用品质提供理论和技术支撑,同时也为微生物菌肥的研发和应用提供一定的参考。
沈佳佳, 侯小改, 王二强, 王菲, 郭丽丽. 油用牡丹根际解有机磷细菌的筛选及解磷功能研究[J]. 生物技术通报, 2022, 38(6): 157-165.
SHEN Jia-jia, HOU Xiao-gai, WANG Er-qiang, WANG Fei, GUO Li-li. Organic Phosphate-solubilizing Bacteria Screening in the Rhizosphere of Paeonia ostii and Study on Their Phosphate-solubilizing Capabilities[J]. Biotechnology Bulletin, 2022, 38(6): 157-165.
菌株编号 Strain No. | 菌株名称 Strain name | 序列号 Serial No. | 相似性 Similarity/% |
---|---|---|---|
FD1-3 | Bacillus aryabhattai | MW085004 | 100 |
FD1-15 | Bacillus megaterium | MW085005 | 99 |
FD3-1 | Bacillus aryabhattai | MW085006 | 100 |
FD3-5 | Pseudomonas mandelii | MW085007 | 99 |
FD3-6 | Arthrobacter siccitolerans | MW085008 | 99 |
FD3-7 | Arthrobacter pascens | MW085009 | 99 |
FD3-13 | Bacillus megaterium | MW085010 | 99 |
FD3-23 | Arthrobacter nitroguajacolicus | MW085011 | 99 |
FD3-24 | Pseudomonas frederiksbergensis | MW085012 | 99 |
FD4-4 | Pseudomonas mandelii | MW085013 | 99 |
FD4-8 | Pseudomonas jessenii | MW085014 | 99 |
FD4-13 | Pseudomonas frederiksbergensis | MW085015 | 99 |
FD4-17 | Novosphingobium gossypii | MW085016 | 99 |
FD4-19 | Bacillus aryabhattai | MW085017 | 100 |
表1 不同生长年限油用牡丹根际解有机磷菌株的基本信息
Table 1 Basic information of organic phosphate-solubiliz-ing bacteria isolated from the rhizosphere of P. os-tii growing for different years
菌株编号 Strain No. | 菌株名称 Strain name | 序列号 Serial No. | 相似性 Similarity/% |
---|---|---|---|
FD1-3 | Bacillus aryabhattai | MW085004 | 100 |
FD1-15 | Bacillus megaterium | MW085005 | 99 |
FD3-1 | Bacillus aryabhattai | MW085006 | 100 |
FD3-5 | Pseudomonas mandelii | MW085007 | 99 |
FD3-6 | Arthrobacter siccitolerans | MW085008 | 99 |
FD3-7 | Arthrobacter pascens | MW085009 | 99 |
FD3-13 | Bacillus megaterium | MW085010 | 99 |
FD3-23 | Arthrobacter nitroguajacolicus | MW085011 | 99 |
FD3-24 | Pseudomonas frederiksbergensis | MW085012 | 99 |
FD4-4 | Pseudomonas mandelii | MW085013 | 99 |
FD4-8 | Pseudomonas jessenii | MW085014 | 99 |
FD4-13 | Pseudomonas frederiksbergensis | MW085015 | 99 |
FD4-17 | Novosphingobium gossypii | MW085016 | 99 |
FD4-19 | Bacillus aryabhattai | MW085017 | 100 |
图2 解有机磷细菌在有机磷培养基上形成的溶磷圈
Fig.2 Phosphate-solubilizing circles formed by organic phosphate-solubilizing bacteria growing on organophosphate culture media
菌株编号 Strain No. | 溶磷圈直径D Diameter of phosphate solubilization circle D/cm | 菌落直径d Colony diameter d/cm | PSI | PSE /% |
---|---|---|---|---|
FD1-3 | 1.10 | 0.20 | 5.50 | 450 |
FD1-15 | 0.90 | 0.10 | 9.00 | 800 |
FD3-1 | 0.80 | 0.30 | 2.67 | 167 |
FD3-5 | 1.45 | 0.30 | 4.83 | 383 |
FD3-6 | 0.40 | 0.25 | 1.60 | 60 |
FD3-7 | 1.44 | 0.30 | 4.80 | 380 |
FD3-13 | 1.10 | 0.20 | 5.50 | 450 |
FD3-23 | 0.90 | 0.30 | 3.00 | 200 |
FD3-24 | 0.90 | 0.35 | 2.57 | 157 |
FD4-4 | 1.20 | 0.40 | 3.00 | 200 |
FD4-8 | 1.10 | 0.20 | 5.50 | 450 |
FD4-13 | 0.50 | 0.20 | 2.50 | 150 |
FD4-17 | 1.20 | 0.30 | 4.00 | 300 |
FD4-19 | 1.00 | 0.20 | 5.00 | 400 |
表2 溶磷圈法分析菌株解磷能力
Table 2 Phosphate-solubilizing capacityies of strains analyzed by phosphate-solubilizing circle method
菌株编号 Strain No. | 溶磷圈直径D Diameter of phosphate solubilization circle D/cm | 菌落直径d Colony diameter d/cm | PSI | PSE /% |
---|---|---|---|---|
FD1-3 | 1.10 | 0.20 | 5.50 | 450 |
FD1-15 | 0.90 | 0.10 | 9.00 | 800 |
FD3-1 | 0.80 | 0.30 | 2.67 | 167 |
FD3-5 | 1.45 | 0.30 | 4.83 | 383 |
FD3-6 | 0.40 | 0.25 | 1.60 | 60 |
FD3-7 | 1.44 | 0.30 | 4.80 | 380 |
FD3-13 | 1.10 | 0.20 | 5.50 | 450 |
FD3-23 | 0.90 | 0.30 | 3.00 | 200 |
FD3-24 | 0.90 | 0.35 | 2.57 | 157 |
FD4-4 | 1.20 | 0.40 | 3.00 | 200 |
FD4-8 | 1.10 | 0.20 | 5.50 | 450 |
FD4-13 | 0.50 | 0.20 | 2.50 | 150 |
FD4-17 | 1.20 | 0.30 | 4.00 | 300 |
FD4-19 | 1.00 | 0.20 | 5.00 | 400 |
图3 不同生长年限油用牡丹根际解有机磷菌株的解磷能力比较
Fig.3 Comparison of phosphate-solubilizing capacities of phosphate-solubilizing strains in the rhizosphere of P. ostii growing for different years
图4 不同生长年限油用牡丹根际解有机磷菌株活化植酸钙能力的分析
Fig.4 Analysis of the capacities to mineralize phytin by phosphate-solubilizing strains in the rhizosphere of P. ostii with different years’ seedlings
[1] | 秦利均, 杨永柱, 杨星勇. 土壤溶磷微生物溶磷、解磷机制研究进展[J]. 生命科学研究, 2019, 23(1):59-64, 86. |
Qin LJ, Yang YZ, Yang XY. Advances in mechanisms of soil phosphorus solubilization and dissolution by phosphate solubilizing microorganisms[J]. Life Sci Res, 2019, 23(1):59-64, 86. | |
[2] |
Wan W, Qin Y, Wu H, et al. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil[J]. Front Microbiol, 2020, 11:752.
doi: 10.3389/fmicb.2020.00752 URL |
[3] | 骆韵涵, 柯志滨, 钟超, 等. 红树林土壤解磷菌的分离鉴定及解磷特性[J]. 中国环境科学, 2020, 40(6):2664-2673. |
Luo YH, Ke ZB, Zhong C, et al. Isolation and identification of phosphate-solubilizing bacteria from mangrove and their phosphate-solubilizing characteristics[J]. China Environ Sci, 2020, 40(6):2664-2673. | |
[4] | 孙科, 耿凤英, 于秋菊, 等. 牛蒡根际土壤中解磷菌筛选、鉴定及解磷条件优化[J]. 中国蔬菜, 2021(1):66-72. |
Sun K, Geng FY, Yu QJ, et al. Screening and identification of phosphate-solubilizing microorganism(PSM)in burdock rhizosphere soil and optimization of phosphate-solubilizing conditions[J]. China Veg, 2021(1):66-72. | |
[5] | 赵小蓉, 林启美. 微生物解磷的研究进展[J]. 土壤肥料, 2001(3):7-11. |
Zhao XR, Lin QM. A review of phosphate dissolving microorganisms[J]. Soils Fertil, 2001(3):7-11. | |
[6] | 薛冬, 黄向东, 杨瑞先, 等. 牡丹根际溶磷放线菌的筛选及其溶磷特性[J]. 应用生态学报, 2018, 29(5):1645-1652. |
Xue D, Huang XD, Yang RX, et al. Screening and phosphate-solubilizing characteristics of phosphate-solubilizing actinomycetes in rhizosphere of tree peony[J]. Chin J Appl Ecol, 2018, 29(5):1645-1652. | |
[7] | 薛冬, 黄向东, 宋根娣, 等. 牡丹根际溶磷真菌的筛选及其促生效应[J]. 生态环境学报, 2018, 27(9):1639-1645. |
Xue D, Huang XD, Song GD, et al. Screening and growth-promoting effect of phosphate-solubilizing fungi in the rhizosphere of Paeonia suffruticosa[J]. Ecol Environ Sci, 2018, 27(9):1639-1645. | |
[8] |
韩蕾, 杨乐, 唐金铭, 等. 解磷菌发酵及溶磷条件的研究[J]. 生物技术通报, 2019, 35(1):98-104.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0733 |
Han L, Yang L, Tang JM, et al. Fermentation condition and phosphate-dissolving capacity of phosphate-solubilizing bacterium[J]. Biotechnol Bull, 2019, 35(1):98-104. | |
[9] | 贺字典, 高玉峰, 王燕, 等. 植物根际促生菌(PGPR)解磷菌的筛选及其对番茄促生作用的研究[J]. 西南农业学报, 2020, 33(12):2891-2896. |
He ZD, Gao YF, Wang Y, et al. Study on phosphate-solubilizing strain selection of plant growth promoting rhizobacteria and its effect on tomato growth promotion[J]. Southwest China J Agric Sci, 2020, 33(12):2891-2896. | |
[10] |
Rfaki A, Zennouhi O, Aliyat FZ, et al. Isolation, selection and characterization of root-associated rock phosphate solubilizing bacteria in Moroccan wheat(Triticum aestivum L.)[J]. Geomicrobiol J, 2020, 37(3):230-241.
doi: 10.1080/01490451.2019.1694106 URL |
[11] | 于淼, 吴红艳, 冯健, 等. 解磷菌623-3的鉴定、培养条件优化及应用[J]. 四川农业大学学报, 2020, 38(5):572-579. |
Yu M, Wu HY, Feng J, et al. Identification, optimization of culture conditions and application of dephosphorizing bacteria 623-3[J]. J Sichuan Agric Univ, 2020, 38(5):572-579. | |
[12] | 陶光灿, 王素英, 郭兴强, 等. 以固氮菌和解磷菌筛选拮抗作物病害的细菌组合[J]. 应用生态学报, 2006, 17(3):3462-3467. |
Tao GC, Wang SY, Guo XQ, et al. Screening of mixed crop disease-resistant bacterial inoculants from N2-fixing and P-solubilzing bacterial isolates[J]. Chin J Appl Ecol, 2006, 17(3):3462-3467. | |
[13] |
杨海霞, 刘希旻, 潘奕臣, 等. 耐盐碱溶磷菌Y2R2的分离鉴定及溶磷特性[J]. 生物技术通报, 2020, 36(10):127-134.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0236 |
Yang HX, Liu XM, Pan YC, et al. Isolation, identification and characterization of salt-alkali-tolerant and phosphorus-dissolving bacterium Y2R2[J]. Biotechnol Bull, 2020, 36(10):127-134. | |
[14] | 李育才. 油用牡丹产业发展的思考[J]. 新产经, 2015(6):52-53. |
Li YC. Thoughts on the development of oil peony industry[J]. New Ind Econ, 2015(6):52-53. | |
[15] |
Li SS, Wang LS, Shu QY, et al. Fatty acid composition of developing tree peony(Paeonia section Moutan DC. )seeds and transcriptome analysis during seed development[J]. BMC Genomics, 2015, 16:208.
doi: 10.1186/s12864-015-1429-0 URL |
[16] | Mao Y, Han J, Tian F, et al. Chemical composition analysis, sensory, and feasibility study of tree peony seed[J]. J Food Sci, 2017, 82(2):553-561. |
[17] | Su J, Ma C, Liu C, et al. Hypolipidemic activity of peony seed oil rich in α-linolenic, is mediated through inhibition of lipogenesis and upregulation of fatty acid β-oxidation[J]. J Food Sci, 2016, 81(4):H1001-H1009. |
[18] | 魏双雨, 李敏, 吉文丽, 等. 适宜氮磷钾用量和配比提高油用牡丹产量和出油量[J]. 植物营养与肥料学报, 2019, 25(5):880-888. |
Wei SY, Li M, Ji WL, et al. Appropriate N, P and K fertilizer rates and combination ratios to increase seed yield and oil production of oil tree peony[J]. J Plant Nutr Fertil, 2019, 25(5):880-888. | |
[19] |
Turner BL, Papházy MJ, Haygarth PM, et al. Inositol phosphates in the environment[J]. Philos Trans R Soc Lond B Biol Sci, 2002, 357(1420):449-469.
doi: 10.1098/rstb.2001.0837 URL |
[20] |
Turner BL, Haygarth PM. Phosphatase activity in temperate pasture soils:Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity[J]. Sci Total Environ, 2005, 344(1/2/3):27-36.
doi: 10.1016/j.scitotenv.2005.02.003 URL |
[21] |
Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiol Lett, 1999, 170(1):265-270.
pmid: 9919677 |
[22] | 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. |
Lin XG. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2010. | |
[23] | 庄馥璐, 柴小粉, 高蓓蓓, 等. 苹果根际解磷菌的分离筛选及解磷能力[J]. 中国农业大学学报, 2020, 25(7):69-79. |
Zhuang FL, Chai XF, Gao BB, et al. Isolation and screening of phosphorus-solubilizing bacteria in apple rhizosphere[J]. J China Agric Univ, 2020, 25(7):69-79. | |
[24] |
Kumar S, Stecher G, Tamura K. MEGA7:molecular evolutionary genetics analysis version 7. 0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.
doi: 10.1093/molbev/msw054 URL |
[25] |
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method[J]. PNAS, 2004, 101(30):11030-11035.
doi: 10.1073/pnas.0404206101 URL |
[26] | Dash N, Pahari A, Dangar TK. Functionalities of phosphate-solubilizing bacteria of rice rhizosphere:techniques and perspectives[M]// Shukla P. Recent advances in applied microbiology. Singapore:Springer, 2017:151-163. |
[27] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000. | |
[28] |
Marschner P, Neumann G, Kania A, et al. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin(Lupinus albus L.)[J]. Plant Soil, 2002, 246(2):167-174.
doi: 10.1023/A:1020663909890 URL |
[29] | 郭丽丽, 尹伟伦, 郭大龙, 等. 油用凤丹牡丹不同种植时间根际细菌群落多样性变化[J]. 林业科学, 2017, 53(11):131-141. |
Guo LL, Yin WL, Guo DL, et al. Variations of bacterial biodiversity in rhizosphere soils of oil tree peony cropping continuously for different years[J]. Sci Silvae Sin, 2017, 53(11):131-141. | |
[30] | 王雪山, 杜秉海, 姚良同, 等. 种植年限对牡丹根际土壤微生物群落结构的影响[J]. 山东农业大学学报:自然科学版, 2012, 43(4):508-516. |
Wang XS, Du BH, Yao LT, et al. Effects of planting years on microbial communities’ structure in peony rhizosphere soil[J]. J Shandong Agric Univ:Nat Sci Ed, 2012, 43(4):508-516. | |
[31] | 王雪山. 种植年限对牡丹根际土壤微生物群落结构的影响[D]. 泰安: 山东农业大学, 2012. |
Wang XS. Effects of planting years on microbial communities’ structure in peony rhizosphere soil[D]. Tai’an: Shandong Agricultural University, 2012. | |
[32] |
Kour D, Rana KL, Kaur T, et al. Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes:a review[J]. Pedosphere, 2021, 31(1):43-75.
doi: 10.1016/S1002-0160(20)60057-1 URL |
[33] | 李豆豆, 尚双华, 韩巍, 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性[J]. 应用生态学报, 2019, 30(7):2384-2392. |
Li DD, Shang SH, Han W, et al. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus[J]. Chin J Appl Ecol, 2019, 30(7):2384-2392. | |
[34] |
Wang Z, Xu G, Ma P, et al. Isolation and characterization of a phosphorus-solubilizing bacterium from rhizosphere soils and its colonization of Chinese cabbage(Brassica campestris ssp. chinensis)[J]. Front Microbiol, 2017, 8:1270.
doi: 10.3389/fmicb.2017.01270 URL |
[35] | 白文娟, 胡蓉蓉, 章家恩, 等. 玉米根际溶磷细菌的分离、筛选及溶磷能力研究[J]. 华南农业大学学报, 2013, 34(2):167-176. |
Bai WJ, Hu RR, Zhang JE, et al. A study on the isolation, screening and phosphate solubilizing capacity of phosphate solubilizing bacteria in the rhizosphere of corn[J]. J South China Agric Univ, 2013, 34(2):167-176. | |
[36] | 叶震, 陈秀蓉, 杨淑君. 东祁连山高寒植被土壤解磷菌筛选及其解磷能力的初步研究[J]. 草原与草坪, 2010, 30(5):6-10. |
Ye Z, Chen XR, Yang SJ. Primary study on isolation and ability of phosphorus-solubilizing bacteria in soil of alpine vegetation in eastern Qilian Mountains[J]. Grassland Turf, 2010, 30(5):6-10. | |
[37] | 赵小蓉, 林启美, 李保国. 溶磷菌对4种难溶性磷酸盐溶解能力的初步研究[J]. 微生物学报, 2002, 42(2):236-241. |
Zhao XR, Lin QM, Li BG. The solubilization of four insoluble phosphates by some microorganisms[J]. Acta Microbiol Sin, 2002, 42(2):236-241. |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[3] | 谢田朋, 张佳宁, 董永骏, 张建, 景明. 早期抽薹对当归根际土壤微环境的影响[J]. 生物技术通报, 2023, 39(7): 206-218. |
[4] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[5] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[6] | 李琦, 杨晓蕾, 李晓林, 申友磊, 李建宏, 姚拓. 高寒草地燕麦根际解植酸磷促生菌鉴定及其优势菌假单胞菌属菌株功能特性[J]. 生物技术通报, 2023, 39(3): 243-253. |
[7] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[8] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[9] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[10] | 江美彦, 周杨, 刘仁浪, 姚菲, 杨云舒, 侯凯, 冯冬菊, 吴卫. 白芷根际促生菌的筛选及其促生效果研究[J]. 生物技术通报, 2022, 38(8): 167-178. |
[11] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[12] | 徐扬, 张冠初, 丁红, 秦斐斐, 张智猛, 戴良香. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234. |
[13] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[14] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[15] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||