生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 158-166.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1444

• 研究报告 • 上一篇    下一篇

水稻盐敏感突变体ss2的鉴定与基因功能分析

陈光1,2,3(), 李佳4, 杜瑞英1,2,3, 王旭1,2,3()   

  1. 1.广东省农业科学院农业质量标准与监测技术研究所,广州 510640
    2.农业农村部农产品质量安全检测与评价重点实验室,广州 510640
    3.广东省农产品质量安全风险评估重点实验室,广州 510640
    4.杭州师范大学生命与环境科学学院,杭州 311121
  • 收稿日期:2021-11-18 出版日期:2022-09-26 发布日期:2022-10-11
  • 作者简介:陈光,男,博士,副研究员,研究方向:植物营养与环境胁迫;E-mail: chenguang0066@126.com
  • 基金资助:
    国家自然科学基金项目(32072662);广东省农业科学院科技人才引进专项资金项目(R2021YJ-QG006);广东省农业科学院农业质量标准与监测技术研究所所长基金项目(DWJJ-202113);浙江省自然科学基金项目(LY20C150007);广东省农产品质量安全风险评估重点实验室(2019年度)(2019B121203009)

Identification and Gene Functional Analysis of Salinity-hypersensitive Mutant ss2 in Rice

CHEN Guang1,2,3(), LI Jia4, DU Rui-ying1,2,3, WANG Xu1,2,3()   

  1. 1. Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences,Guangzhou 510640
    2. Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality,Ministry of Agriculture and Rural Affairs,Guangzhou 510640
    3. Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products,Guangzhou 510640
    4. College of Life and Environmental Sciences,Hangzhou Normal University,Hangzhou 311121
  • Received:2021-11-18 Published:2022-09-26 Online:2022-10-11

摘要:

通过盐胁迫筛选EMS诱变的粳稻突变体库,挖掘盐逆境响应关键基因,鉴定出一个盐敏感突变体。在100 mmol/LNaCl处理下,突变体严重萎蔫,叶片褪绿黄化,地上部Na+的积累显著高于野生型。盐胁迫后,突变体叶片的光合速率和叶绿素含量均显著低于野生型,并且源叶中的蔗糖含量增加,而根中的蔗糖只有野生型的83%。突变体源叶中参与糖转运的几个关键基因表达下调,进一步表明糖分向库器官根系的分配受抑制。突变体库组织中较低的蔗糖含量不能满足生长发育对碳营养的需求,导致水稻耐盐性降低。通过图位克隆确定候选基因,将其命名为SS2,互补实验可以恢复突变体的盐敏感表型,盐胁迫下生长的互补转基因株系与野生型植株无显著差异。综上所述,SS2通过调控体内糖分转运,对水稻的生长和盐胁迫响应起重要作用。

关键词: 水稻, 突变体, 图位克隆, 蔗糖转运, 盐胁迫

Abstract:

A library of ethane methyl sulfonate-induced Japonica rice mutants was screened under salinity conditions to explore putative salt stress-responsive genes,and a particularly salinity-sensitive mutant was identified. When challenged with 100 mmol/L NaCl,the mutant wilted heavily,became chlorotic and took up substantially more Na+ into shoots than its wild type(WT). The mutant plants' leaves suffered from a significantly greater decrease in both photosynthetic rate and leaf chlorophyll content than the WT plants' leaves after exposure to salinity,while the sucrose contents of the leaves increased and that in the roots decreased to 83% of WT ones. The expressions of several genes involved in sugar transport in the source leaves were down-regulated, indicating the impairment of sugar partitioning to the roots of the tissue organs. The lower sucrose contents in the sink tissues of the mutant could not meet the carbohydrate demands of plant growth,thereby the salinity tolerance reduced. The candidate gene was identified by map-based cloning and was denoted here as SS2(salinity sensitive 2). Functional complementation using the WT restored the salt sensitivity of the mutants. There was no significant difference between the performance of the complementary transgenic lines and the WT plants grown under salinity stress. The conclusion is that SS2 plays an important role in seedling growth and the response of rice to salinity stress by influencing sugar transport.

Key words: rice, mutant, map-based cloning, sucrose transport, salinity stress