生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 147-157.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0396
• 细菌耐药性专题(专题主编: 刘雅红 教授 孙坚 教授) • 上一篇 下一篇
石成龙1(), 汪锡武1, 李安琪1, 钱森和1,2, 王洲1,2(), 赵世光1,2, 刘艳1,2, 薛正莲1,2
收稿日期:
2022-04-01
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
石成龙,男,硕士研究生,研究方向:微生物制药;E-mail: 基金资助:
SHI Cheng-long1(), WANG Xi-wu1, LI An-qi1, QIAN Sen-he1,2, WANG Zhou1,2(), ZHAO Shi-guang1,2, LIU Yan1,2, XUE Zheng-lian1,2
Received:
2022-04-01
Published:
2022-09-26
Online:
2022-10-11
摘要:
ε-聚赖氨酸(ε-polylysine,ε-PL)作为一种抗菌活性强、安全性高、热稳定性好的阳离子型天然多肽,已作为安全的食品防腐剂受到关注。以阪崎克罗诺杆菌(Cronobacter sakazakii)为供试菌株,揭示ε-PL的抑菌机理,为细菌耐药性和食品防腐措施研究提供理论支持。研究了ε-PL作用下对阪崎克罗诺杆菌的最小抑菌浓度(minimum inhibitory concentration,MIC)、细胞膜壁通透性、细胞表面疏水性及运动性等生理特性的影响,并利用透射电子显微镜对ε-PL作用下的细菌细胞形态变化进行了观察,在此基础上,探究了ε-PL对阪崎克罗诺杆菌生物被膜(biofilm,BF)的抑制和清除作用效果,并利用荧光染色显微观察清除后被膜菌通透性的改变。ε-PL对阪崎克罗诺杆菌的抑菌活性具有浓度依赖性,ε-PL对阪崎克罗诺杆菌ATCC51329的MIC为256 μg/mL。ε-PL能够增强细胞膜壁通透性,使其细胞内容物如核酸、碱性磷酸酶等大量渗出,从而表现对阪崎克罗诺杆菌的杀菌作用。同时ε-PL能够降低阪崎克罗诺杆菌的表面疏水性和运动性,进而影响阪崎克罗诺杆菌生物被膜的形成。ε-PL对阪崎克罗诺杆菌生物被膜抑制和清除的作用效果显著,结合物理振荡,可大大提高生物被膜清除效率。ε-PL能够破坏阪崎克罗诺杆菌的细胞结构,从而达到抑菌效果。ε-PL能够降低阪崎克罗诺杆菌细胞表面的疏水性、运动性,进而ε-PL能够抑制生物被膜的形成,对成熟生物被膜也具有清除作用。
石成龙, 汪锡武, 李安琪, 钱森和, 王洲, 赵世光, 刘艳, 薛正莲. ε-聚赖氨酸对阪崎克罗诺杆菌细胞结构与生物被膜形成的影响[J]. 生物技术通报, 2022, 38(9): 147-157.
SHI Cheng-long, WANG Xi-wu, LI An-qi, QIAN Sen-he, WANG Zhou, ZHAO Shi-guang, LIU Yan, XUE Zheng-lian. Effect of ε-Polylysine on the Cell Structure and Biofilm Formation of Cronobacter sakazakii[J]. Biotechnology Bulletin, 2022, 38(9): 147-157.
图1 ε-PL对阪崎克罗诺杆菌的抑菌评价 A:最小抑菌浓度测定;B:生长曲线。图中误差线表示标准偏差,*表示与CK组相比差异显著(P<0.05),下同
Fig. 1 Bacteriostatic evaluation of ε-PL against C. sakazakii A:Determination of minimum inhibitory concentration; B:growth curve. The error line in the figure refers to the standard deviation,* indicates that there is significant difference compared with CK group(P<0.05),the same below
图2 ε-PL对阪崎克罗诺杆菌膜壁特性的影响 A:核酸紫外吸收;B:碱性磷酸酶浓度
Fig. 2 Effect of ε-PL on membrane wall properties of C. sakazakii A:Nucleic acid UV absorption. B:AKP concentration
图3 ε-PL处理后阪崎克罗诺杆菌的透射电镜图像(×15.0 k) A:无药物处理对照组;B:1×MIC药物浓度处理组;C:2 ×MIC药物浓度处理组
Fig. 3 Transmission electron microscope image of C. saka-zakii after ε-PL treatment(×15.0 k) A:Control group without treatment. B:1×MIC treatment group. C:2×MIC treatment group
图8 不同处理方式对生物被膜菌存活的影响(×200) A:静置20 h的对照组;B:静置20 h的1×MIC组;C:静置20 h的2×MIC组;D:振荡3 h的对照组;E:振荡3 h的1×MIC组;F:振荡3 h的2×MIC组
Fig. 8 Effects of different treatment methods on the living of biofilms(×200) A:Control group with 20 h rest. B:1×MIC group with 20 h rest. C:2×MIC group with 20 h rest. D:Control group with oscillation for 3 h. E:1×MIC group with oscillation for 3 h. F:2×MIC group with oscillation for 3 h
[1] | 柴阿丽, 韩云, 武军, 等. 基于FDA-PI双荧光复染法的茄病镰刀菌孢子活性检测[J]. 中国农业科学, 2015, 48(14):2757-2766. |
Chai AL, Han Y, Wu J, et al. Determination of spore viability of Fusarium solani based on dual fluorescence assay[J]. Sci Agric Sin, 2015, 48(14):2757-2766. | |
[2] |
Norberg S, Stanton C, Ross RP, et al. Cronobacter spp. in powdered infant formula[J]. J Food Prot, 2012, 75(3):607-620.
doi: 10.4315/0362-028X.JFP-11-285 URL |
[3] |
Yan QQ, Condell O, Power K, et al. Cronobacter species(formerly known as Enterobacter sakazakii)in powdered infant formula:a review of our current understanding of the biology of this bacterium[J]. J Appl Microbiol, 2012, 113(1):1-15.
doi: 10.1111/j.1365-2672.2012.05281.x pmid: 22420458 |
[4] |
Fang RY, Wang QN, Yang BW, et al. Prevalence and subtyping of Cronobacter species in goat milk powder factories in Shaanxi Province, China[J]. J Dairy Sci, 2015, 98(11):7552-7559.
doi: 10.3168/jds.2015-9661 URL |
[5] | Kragh KN, Hutchison JB, Melaugh G, et al. Role of multicellular aggregates in biofilm formation[J]. mBio, 2016, 7(2):e00237. |
[6] | 齐子琦, 秦子晋, 黄永震, 等. 生物防腐剂ε-聚赖氨酸的研究进展[J]. 食品工业, 2019, 40(10):289-293. |
Qi ZQ, Qin ZJ, Huang YZ, et al. Research progress of ε-polylysine as a biological preservative[J]. Food Ind, 2019, 40(10):289-293. | |
[7] |
Hiraki J, Ichikawa T, Ninomiya SI, et al. Use of ADME studies to confirm the safety of Epsilon-polylysine as a preservative in food[J]. Regul Toxicol Pharmacol, 2003, 37(2):328-340.
doi: 10.1016/S0273-2300(03)00029-1 URL |
[8] |
You XM, Einson JE, Lopez-Pena CL, et al. Food-grade cationic antimicrobial ε-polylysine transiently alters the gut microbial community and predicted metagenome function in CD-1 mice[J]. Npj Sci Food, 2017, 1:8.
doi: 10.1038/s41538-017-0006-0 pmid: 31304250 |
[9] | 卢绪志, 王伟, 金维忠. 天然生物防腐剂在肉制品中的应用[J]. 肉类工业, 2020(6):46-49. |
Lu XZ, Wang W, Jin WZ. Application of natural biological preservatives in meat products[J]. Meat Ind, 2020(6):46-49. | |
[10] | 巴良杰, 罗冬兰, 吉宁, 等. 生物保鲜纸对李子贮藏期品质的影响[J]. 食品与机械, 2020, 36(7):140-143, 226. |
Ba LJ, Luo DL, Ji N, et al. Effect of biological preservative paper on the storage quality of plum fruit[J]. Food Mach, 2020, 36(7):140-143, 226. | |
[11] |
Badaoui Najjar M, Kashtanov D, Chikindas ML. Epsilon-poly-L-lysine and nisin A act synergistically against Gram-positive food-borne pathogens Bacillus cereus and Listeria monocytogenes[J]. Lett Appl Microbiol, 2007, 45(1):13-18.
doi: 10.1111/j.1472-765X.2007.02157.x pmid: 17594454 |
[12] |
Mizan MFR, Ashrafudoulla M, Hossain MI, et al. Effect of essential oils on pathogenic and biofilm-forming Vibrio parahaemolyticus strains[J]. Biofouling, 2020, 36(4):467-478.
doi: 10.1080/08927014.2020.1772243 URL |
[13] | 郑丽平, 陆兆新, 孔梁宇, 等. 鼠伤寒沙门氏菌生物被膜的清除效果研究[J]. 食品工业科技, 2021, 42(22):140-152. |
Zheng LP, Lu ZX, Kong LY, et al. Study on the removal effect of Salmonella typhimurium biofilm[J]. Sci Technol Food Ind, 2021, 42(22):140-152. | |
[14] | 鲍佳佳, 李倩, 孙铭艳, 等. ε-聚赖氨酸对铜绿假单胞菌生长及生物膜形成的影响[J]. 中国病原生物学杂志, 2021, 16(3):258-260, 265. |
Bao JJ, Li Q, Sun MY, et al. The effect of ε-polylysine on the growth of and biofilm formation by Pseudomonas aeruginosa[J]. J Pathog Biol, 2021, 16(3):258-260, 265. | |
[15] |
Shen CK, Islam MT, Masuda Y, et al. Transcriptional changes involved in inhibition of biofilm formation by ε-polylysine in Salmonella Typhimurium[J]. Appl Microbiol Biotechnol, 2020, 104(12):5427-5436.
doi: 10.1007/s00253-020-10575-2 URL |
[16] |
Ning HQ, Lin H, Wang JX. Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms[J]. Int J Food Microbiol, 2021, 343:109112.
doi: 10.1016/j.ijfoodmicro.2021.109112 URL |
[17] | 陈晓青, 李可可, 余甜, 等. ε-聚赖氨酸对金黄色葡萄球菌生长及生物膜形成的影响[J]. 中国抗生素杂志, 2018, 43(1):91-95. |
Chen XQ, Li KK, Yu T, et al. Effects of ε-PL on growth and biofilm formation of Staphylococcus aureus[J]. Chin J Antibiot, 2018, 43(1):91-95. | |
[18] |
Long M, Wang J, Zhuang H, et al. Performance and mechanism of standard nano-TiO2(P-25)in photocatalytic disinfection of foodborne microorganisms - Salmonella typhimurium and Listeria monocytogenes[J]. Food Control, 2014, 39:68-74.
doi: 10.1016/j.foodcont.2013.10.033 URL |
[19] |
Liu KW, Zhou XJ, Fu MR. Inhibiting effects of Epsilon-poly-lysine(ε-PL)on Pencillium digitatum and its involved mechanism[J]. Postharvest Biol Technol, 2017, 123:94-101.
doi: 10.1016/j.postharvbio.2016.08.015 URL |
[20] | Huang JF, Yang LY, Zou Y, et al. Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil[J]. Folia Microbiol(Praha), 2021, 66(1):59-67. |
[21] |
Lan WQ, Zhang NN, Liu SC, et al. Ε-polylysine inhibits Shewanella putrefaciens with membrane disruption and cell damage[J]. Molecules, 2019, 24(20):3727.
doi: 10.3390/molecules24203727 URL |
[22] | 王梓源, 李欣颖, 吕俊阁, 等. ε-聚赖氨酸对大肠杆菌的抑菌机制[J]. 食品与发酵工业, 2020, 46(21):34-41. |
Wang ZY, Li XY, Lyu JG, et al. The antimicrobial mechanism of ε-poly-L-lysine against Escherichia coli[J]. Food Ferment Ind, 2020, 46(21):34-41. | |
[23] | 吴晨奇, 高以任, 宋京城, 等. ε-聚赖氨酸在肉制品保鲜中的应用[J]. 食品安全导刊, 2021(33):183-185, 189. |
Wu CQ, Gao YR, Song JC, et al. Application of ε-polylysine in preservation of meat products[J]. China Food Saf Mag, 2021(33):183-185, 189. | |
[24] |
赵昇, 吴学妍, 张硕, 等. ε-聚赖氨酸对重要食源性致病菌的作用效果研究进展[J]. 食品与发酵工业, 2021. DOI: 10.13995/j. cnki. 11-1802/ts. 029852.
doi: 10.13995/j. cnki. 11-1802/ts. 029852 |
Zhao S, Wu XY, Zhang S, et al. Research progress on the effect of ε-polylysine on important foodborne pathogens[J]. Food Ferment Ind, 2021. DOI: 10.13995/j. cnki. 11-1802/ts. 029852.
doi: 10.13995/j. cnki. 11-1802/ts. 029852 |
|
[25] |
Hyldgaard M, Mygind T, Vad BS, et al. The antimicrobial mechanism of action of Epsilon-poly-l-lysine[J]. Appl Environ Microbiol, 2014, 80(24):7758-7770.
doi: 10.1128/AEM.02204-14 URL |
[26] |
Gupta P, Sarkar S, Das B, et al. Biofilm, pathogenesis and prevention-a journey to break the wall:a review[J]. Arch Microbiol, 2016, 198(1):1-15.
doi: 10.1007/s00203-015-1148-6 URL |
[27] |
Bowler PG. Antibiotic resistance and biofilm tolerance:a combined threat in the treatment of chronic infections[J]. J Wound Care, 2018, 27(5):273-277.
doi: 10.12968/jowc.2018.27.5.273 URL |
[28] | 李芬, 范玉堂, 王丽娟, 等. 牛乳源大肠杆菌生物被膜形成及抗生素的作用[J]. 西北农业学报, 2020, 29(7):983-989. |
Li F, Fan YT, Wang LJ, et al. Biofilm formation and antibiotics resistance of Escherichia coli isolated from milk[J]. Acta Agric Boreali Occidentalis Sin, 2020, 29(7):983-989. | |
[29] |
Damrongsaktrakul P, Ruengvisesh S, Rahothan A, et al. Removal of Salmonella typhimurium biofilm from food contact surfaces using Quercus infectoria gall extract in combination with a surfactant[J]. J Microbiol Biotechnol, 2021, 31(3):439-446.
doi: 10.4014/jmb.2101.01014 URL |
[30] |
Packiavathy IASV, Priya S, Pandian SK, et al. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa[J]. Food Chem, 2014, 148:453-460.
doi: 10.1016/j.foodchem.2012.08.002 pmid: 24262582 |
[31] | 杨昆, 王欢, 高洁, 等. 抗菌肽BCp12对大肠杆菌壁膜及DNA损伤的作用机制[J]. 食品科学, 2021, 42(19):114-121. |
Yang K, Wang H, Gao J, et al. Mechanism by which antimicrobial peptide BCp12 acts on the cell wall and membrane of Escherichia coli cells and induces DNA damage[J]. Food Sci, 2021, 42(19):114-121. | |
[32] | 景春娥, 李萍, 杜欣军, 等. 黄芩苷对阪崎克罗诺杆菌生物膜的抑制作用[J]. 微生物学通报, 2016, 43(8):1774-1784. |
Jing CE, Li P, Du XJ, et al. Inhibition of Cronobacter sakazaki biofilms by baicalin[J]. Microbiol China, 2016, 43(8):1774-1784. | |
[33] | 郭都, 赵宇阳, 王瑞霞, 等. 硫辛酸对阪崎克罗诺杆菌感染能力的抑制作用[J]. 食品科学, 2020, 41(17):188-195. |
Guo D, Zhao YY, Wang RX, et al. Anti-infective activity of lipoic acid against Cronobacter sakazakii[J]. Food Sci, 2020, 41(17):188-195. | |
[34] |
Topa SH, Subramoni S, Palombo EA, et al. Cinnamaldehyde disrupts biofilm formation and swarming motility of Pseudomonas aeruginosa[J]. Microbiology, 2018, 164(9):1087-1097.
doi: 10.1099/mic.0.000692 URL |
[35] |
Robertson J, McGoverin C, White JR, et al. Rapid detection of Escherichia coli antibiotic susceptibility using live/dead spectrometry for lytic agents[J]. Microorganisms, 2021, 9(5):924.
doi: 10.3390/microorganisms9050924 URL |
[36] |
Huang ZW, Kuang X, Chen ZX, et al. Comparative studies of tri- and hexavalent chromium cytotoxicity and their effects on oxidative state of Saccharomyces cerevisiae cells[J]. Curr Microbiol, 2014, 68(4):448-456.
doi: 10.1007/s00284-013-0496-1 URL |
[37] | 刘志恬, 董玉鹏, 李永才, 等. ε-聚赖氨酸对梨果实黑斑病菌Alternaria alternata的抑制作用及其机理[J]. 食品科学, 2021, 42(11):213-220. |
Liu ZT, Dong YP, Li YC, et al. Antifungal effect of ε-polylysine on Alternaria alternata isolated from pears with black spot and its possible mechanism[J]. Food Sci, 2021, 42(11):213-220. | |
[38] | 顾玉卿, 殷成芮, 潘凤好, 等. 冬凌草甲素纳米脂质体对嗜水气单胞菌生物膜的抑制活性研究[J]. 食品研究与开发, 2022, 43(5):21-27. |
Gu YQ, Yin CR, Pan FH, et al. Inhibitory activity of oridonin nanoliposomes against Aeromonas hydrophila biofilm[J]. Food Res Dev, 2022, 43(5):21-27. | |
[39] | 袁帅, 王秀红, 白春美, 等. ε-聚赖氨酸在果蔬采后贮藏保鲜中的应用研究进展[J]. 食品研究与开发, 2021, 42(17):196-203. |
Yuan S, Wang XH, Bai CM, et al. Recent progress in the application of ε-polylysine in postharvest storage and preservation of fruits and vegetables[J]. Food Res Dev, 2021, 42(17):196-203. | |
[40] | 蔡芝玲, 莫梓童, 郑诗倩, 等. 黄绵马酸BB联合红霉素抑制表皮葡萄球菌及其生物被膜的形成研究[J]. 中草药, 2022, 53(8):2417-2427. |
Cai ZL, Mo ZT, Zheng SQ, et al. Antibacterial and antibiofilm effects of flavaspidic acid BB combined with erythromycin on Staphylococcus epidermidis[J]. Chin Tradit Herb Drugs, 2022, 53(8):2417-2427. | |
[41] |
Li AQ, Shi CL, Qian SH, et al. Evaluation of antibiotic combination of Litsea cubeba essential oil on Vibrio parahaemolyticus inhibition mechanism and anti-biofilm ability[J]. Microb Pathog, 2022, 168:105574.
doi: 10.1016/j.micpath.2022.105574 URL |
[1] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[2] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
[3] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[4] | 李典典, 粟元, 李洁, 许文涛, 朱龙佼. 抗菌适配体的筛选与应用进展[J]. 生物技术通报, 2023, 39(6): 126-132. |
[5] | 任思雨, 姜聪一, 于涛, 康瑞, 姜晓冰. agr系统在单核增生细胞李斯特菌耐药及生物被膜形成中的作用[J]. 生物技术通报, 2023, 39(2): 254-262. |
[6] | 张玲, 张荣意, 刘盛科, 谭志琼. 瓜类细菌性果斑病菌拮抗细菌的筛选及其抑菌作用[J]. 生物技术通报, 2023, 39(1): 253-263. |
[7] | 赵子玉, 王春光, 吕建存, 李继开, 张铁. 超广谱β-内酰胺酶CTX-M-14中药抑制剂的筛选及芸香苷抑酶作用研究[J]. 生物技术通报, 2022, 38(6): 235-244. |
[8] | 王子琰, 王建, 张伦, 桂水清, 卢雪梅. 家蝇抗菌肽MDC对鼠伤寒沙门氏菌的抑菌稳定性研究[J]. 生物技术通报, 2022, 38(3): 149-156. |
[9] | 杨瑞先, 刘萍, 王祖华, 阮宝硕, 汪智达. 牡丹根腐病原菌拮抗细菌抑菌活性物质分析[J]. 生物技术通报, 2022, 38(2): 57-66. |
[10] | 赵雅茹, 许庆方, 高文俊, 郭刚, 陈雷, 玉柱. 抑霉乳酸菌脱毒特性及青贮应用的研究[J]. 生物技术通报, 2021, 37(9): 95-105. |
[11] | 王小河, 辜夕容, 祁顺菊, 李杰, 崔瑶, 李得霞, 杨莉荟. 巴山榧树枝和叶提取物的抗氧化能力、抑菌活性与挥发性成分[J]. 生物技术通报, 2021, 37(8): 152-161. |
[12] | 蔡国磊, 陆小凯, 娄水珠, 杨海英, 杜刚. 芽孢杆菌LM基于全基因组的分类鉴定及抑菌原理的研究[J]. 生物技术通报, 2021, 37(8): 176-185. |
[13] | 李峰, 陈雯雯, 邓江丽, 毛清黎, 权文利, 毛雅慧. 白藜芦醇对核桃细菌性黑斑病菌的抑制作用[J]. 生物技术通报, 2021, 37(6): 58-65. |
[14] | 高苏, 马婕馨, 刘警鞠, 赵国柱. 虫草素的抑菌活性及机理研究[J]. 生物技术通报, 2021, 37(4): 137-144. |
[15] | 田露, 吴咪, 缑敬轩, 龚国利. 细菌素的研究与应用进展[J]. 生物技术通报, 2021, 37(4): 224-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||